Сенсорная кнопка своими руками – Разработка сенсорного Z-Wave выключателя на аккумуляторе со светящимися кнопками

Простая сенсорная кнопка


Простейшее сенсорное устройство можно собрать на нескольких доступных деталях. Всего три транзистора, три резистора и один светодиод, вот и всё. Собирать схему можно даже навесным монтажом, всё работать будет.

Транзисторы любые NPN структуры: КТ315, КТ3102 или BC547 или любой другой. Резисторы 0,125-0,25 Ватт. Светодиод любого цвета, но лучше красный, так как падение напряжение падение у него минимальное. Питание 5 вольт, больше меньше можно и меньше тоже.

Все компоненты были компактно соединены между собой на миниатюрной печатной плате, которую можно сделать просто вырезав лишнюю медь резаком оставив таким способом остроугольные многоугольники. Детали, использованные для поверхностного монтажа, транзисторы в sot-26 npn, резисторы 0805, перемычки – кусочки провода, вместо них, если есть берите крупный 2512 резисторы с нулевым (условно) сопротивлением. Сенсорное устройство работает сразу, без настройки.

Объяснение работы схемы

Дотрагиваясь до базы транзистора Q3 вы наводками открываете его, вследствие чего через его КЭ и резистор 1 Мом течет ток, который открывает следующий полупроводник Q2, тот открываясь открывает Q3, который уже управляет светодиодом, открываясь через его КЭ течет ток, от минуса идет к катоду светодиода, а к аноду он уже подключен. Резистор 220 Ом здесь “токоограничительный”, на нём падает лишнее напряжение, что защищает диод от деградирования кристалла и полного выхода из строя LED1

Применение

Ну вот горит светодиод по касанию пальца – и что? А вот то, что вместо этого светодиода ставим реле и теперь мы можем управлять почти любой нагрузкой, в зависимости от характеристик применяемого реле. Ставим мощную лампу накаливания, подключенную к сети, а в разрыв этой цепи контакты реле. Теперь при нажатии, а точнее касании сенсора лампа светит.

Также организовать включение/отключение нагрузки можно с помощью оптопары, если отсутствует реле, тогда также будет гальваническая развязка. Эта прекрасная вещь состоит из светодиода и фототранзистора, когда первый светит, то это открывает транзистор и через его КЭ может течь ток. Включаем нужные выводы оптрона в схему сенсора вместо светодиода LED1, а остальные два в разрыв источника питания и любой нагрузки. Эту деталь можно изъять из зарядок от телефона. Возьмите, к примеру, PC-17L1.

Чуть ниже вы видите дополнение к основной схеме, где показано как нужно подключать оптопару к схеме сенсора, также добавлен один транзистор, это нужно для того чтобы вы могли подключать весомую нагрузку, а не просто светодиоды на 20 mA.

Еще вместо реле и оптопары возможно применение двух npn транзисторов. Я так и сделал, схему вы видите. Работает это так: Q5 всегда должен быть открыт, через резистор 10 кОм, но через КЭ открытого Q4 на базу Q5 поступает “минус” и из-за этого он закрыт. Когда же вы касаетесь сенсора – то минус поступает через открытый Q1 на базу Q4 и закрывает его, теперь уж ничто не мешает Q5 оставаться открытым – нагрузка работает, а в моем случае мощный 1 Ватт светодиод ярко светит.

Так это выглядит в собранном состоянии.

Сенсор не имеет фиксации, дотронулись – светит, отпустили – не светит. Коль желаете сделать фиксацию – просто добавьте в схему триггер, например, на микросхеме КМ555ТМ2 или любой другой (можно даже на таймере 555 реализовать это). С добавление триггерной системы при касании к сенсору нагрузка будет включена до тех пор, пока не произойдет следующее касание или исчезнет питание схемы.

На практике это можно применить для быстрого включения и отключения освещения в комнате. Очень удобно, коснулся небольшого чувствительного участка, и комната освещена, второе касание отключит свет. Небольшое количество энергии будет теряться, но этим можно пренебречь.


Коментарии

Схема работает, но из-за своей простоты далеко не идеально. Если сенсор большой, то схема может срабатывать даже тогда, когда вы еще не дотронулись до него, также если вы рукой расчешете волосы возле датчика светодиод также может загореться. Выход из этой ситуации простой – миниатюрный сенсорный датчик.

Как уже говорилось – открытие Q3 происходит за счет наводок, видеть это можно на видео, светодиод светит не постоянно, а подмигивает с большой частотой, но это хорошо заметно при съёмки.

Яркость работающего диода не велика, если вы дотрагиваетесь только до базы третьего транзистора, но стоит вам коснуться еще и плюса питания, то ваше тело выступит в роле резистора и транзистор Q3 перейдет в насыщение. Но при таком раскладе для некоторых потеряется смысл сенсора.

Эта схема очень проста и предназначена лишь для понимания принципа работы электронных компонентов, применять в серьезных конструкциях не рекомендуется.

Видео

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Сенсорная кнопка своими руками


Привет всем любителям самоделок. Частенько приходится управлять своими изобретениями, будь то кнопка включения или какой-то тумблер, но хотелось бы чтобы устройство также работало от прикосновения, другими словами имело сенсорную кнопку, отвечающую за пуск устройства. Именно в этой статье я расскажу, как сделать сенсорную кнопку, включающую ваше любое электронное устройство.

А перед началом прочтения пошаговой сборки, предлагаю посмотреть видео с небольшим тестом и наглядным изготовлением самоделки.


Для того, чтобы сделать сенсорную кнопку своими руками, понадобится:
* Два транзистора 2n3055 купить на али
* Транзистор 2n2222a купить на али
* Резистор на 1 кОм купить на али
* Металлическая пластинка
* Провода
* Паяльник, припой, флюс
* Термоклеевой пистолет
* Мотор или лампочка для проверки
* Блок питания 12 вольт

Вот и все, что нужно для сборки самодельной сенсорной кнопки.

Шаг первый.
Для того, чтобы вся схемы была понятна и достаточна наглядна было принято решение сделать ее прямо на картонке с распечатанной на ней электрической схемой, куда и будут устанавливаться все компоненты.



Первым делом нужно установить два главных транзистора и приклеить их на термоклей, располагаться они будут ножками вверх для удобства при пайке, текст при этом на самом транзисторе изначально должен быть в правильном положении, а не перевернут.

Также приклеиваем на картонку второй транзистор и уже между эмиттером левого и базой правого транзистора припаиваем резистор на 1 кОм, который перед пайкой можно проверить на номинальное сопротивление при помощи мультиметра (допустимо небольшое отклонение в обе стороны в пределах 5 процентов). При пайке старайтесь не перегревать выводы транзисторов, иначе они могут выйти из строя.

Шаг второй.
Приклеиваем на картонку третий транзистор, что поменьше.

Его клеить удобнее всего плоской стороной, поэтому не забываем, что контакты будут расположены в обратном направлении.

После этого приклеиваем на термоклей кнопку, сделанную из металлической банки при помощи ножниц, учтите, что алюминиевые банки не подойдут, так как плохо лудятся и требуют специального флюса.


Шаг третий.
Теперь берем два провода и припаиваем их к коллекторам двух больших транзисторов, заранее залудив их часть корпуса, так как это и есть коллектор.

Данные провода закрепляем на картонке при помощи термоклея, подключаться они будут к любому устройству, работающему от электричества.

А сейчас самое время припаять провода к транзистору поменьше. Залуживаем выводы транзистора и припаиваем к нему провода.


Эмиттер или же вывод под цифрой 1 на картонке припаиваем через провод к базе большого транзистора, что слева.

Второй вывод транзистора или же базу припаиваем к металлической кнопке, он же сенсор.

И последний провод припаиваем к оставшемуся выводу транзистора, а точнее коллектору , который спаиваем проводом с коллектором большого левого транзистора.

Шаг четвертый.
К коллектору левого большого транзистора припаиваем еще один провод, он будет плюсовым для подачи питания, а минус питания припаиваем к эмиттеру правого транзистора. На картонке полюса случайно перепутал, поэтому собирайте по схеме, приведенной на картинке, там плюсовой контакт находится в нижнем правом углу.

Шаг пятый.
Теперь пришло время протестировать самоделку.

Подключаем блок питания к проводам, соблюдая полярность, выставляем напряжение 12 вольт и на выходе подсоединяем выводы к моторчику, также можно подключить лампочку или же реле, которое будет управлять уже напряжением сети.

Прикасаясь к металлической пластине, она же сенсорная кнопка, устройство, подключенное к выводам с транзисторов запускается, а значит самоделку можно считать завершенной и применять в дальнейших идеях.

На этом у меня все, всем спасибо за внимание и творческих всем успехов.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Самодельный модуль сенсорной кнопки

Самодельный модуль сенсорной кнопки

На сайтах Aliexpress, Adafruit, Амперка и подобных (не только на букву А) можно встретить модули сенсорных кнопок. Они очень удобны: подключил такой к цифровому входу Arduino (или просто счёного триггера) - и тот «думает», что это обычная механическая кнопка с подтягивающим резистором и цепью подавления дребезга. Автор Instrictables под ником TheCircuit предлагает сделать такую же штуку, но своими руками. Давайте посмотрим, как.

В состав конструкции входят: операционный усилитель LM358, два постоянных резистора - 330 Ом и 10 кОм, один подстроечный на 10 кОм и светодиод:

Самодельный модуль сенсорной кнопки

Мастер собирает модуль по такой схеме (конечно же, у сенсорной пластины один вывод, а не два запараллеленных):

Самодельный модуль сенсорной кнопки

Сначала на макетной плате типа breadboard. Размещает компоненты и перемычки, соединяет. Единственный полярный компонент из двухвыводных здесь - светодиод.

Самодельный модуль сенсорной кнопки

Подключает провода питания в правильной полярности, но питание пока не подаёт:

Самодельный модуль сенсорной кнопки

Присоединяет сенсорную пластину:

Самодельный модуль сенсорной кнопки

Включает питание (3,3 или 5 В, при работе совместно с внешним устройством источник питания должен быть общим). Подстроечным резистором настраивает чувствительность так, чтобы при прикосновении к сенсорной пластине светодиод светился, а при отпускании - нет. Вот всё и работает:

Самодельный модуль сенсорной кнопки

Сигнал на внешнее устройство следует снимать с точки соединения правого по схеме вывода резистора на 330 Ом с выводом 1 микросхемы. Прикосновению будет соответствовать логическая единица - как и у готовых модулей сенсорных кнопок.


Отлаженную схему мастер переносит на более компактную макетную плату типа perfboard, добавляет трёхконтактную гребёнку (питание, выход, общий) и панельку под микросхему, позволяющую не перегреть её при пайке:Самодельный модуль сенсорной кнопки

После переноса может потребоваться дополнительная подстройка чувствительности подстроечным резистором. Можно, конечно, собрать и отладить схему сразу на perfboard'е. Гребёнка позволяет, в частности, поставить модуль в breadboard вертикально, как будто это один компонент:

Самодельный модуль сенсорной кнопки

Устройство, в составе которого будут работать один или несколько таких модулей, должно иметь гальваническую развязку от сети. Источника питания, используемого при проверке и отладке, это тоже касается.


Источник Самодельный модуль сенсорной кнопки Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

СЕНСОРНАЯ КНОПКА ДЛЯ ВКЛЮЧЕНИЯ

Важная часть любого электронного устройства – кнопка включения/выключения. В этой статье рассмотрим процесс создания сенсорной кнопки на микроконтроллере Attiny13, которой можно коммутировать отдельные светодиоды или светодиодную ленту. Устройство позволяет включить свет одним касанием металлической пластинки и выключить касанием той же пластинки. Включение и выключение – плавное. Если долго держать палец на сенсоре – светодиоды начнут плавно угасать, а затем вновь постепенно загораться, отпустив сенсор в нужный момент можно выбрать яркость свечения.

Схема принципиальная

Сенсорная кнопка на базе микроконтроллера Attiny13

Ключевым звеном схемы является микроконтроллер Attiny13, который распознаёт касание сенсора и управляет полевым транзистором VT1. Для его питания необходимо напряжение 5 вольт, которое формируется на стабилизаторе 78L05. Частота тактирования МК – 9,6 МГц, делитель на 8 отключён. Для установки фьюзов можно воспользоваться фьюз-калькулятором. Полевой транзистор предпочтительнее использовать с логическим управлением, например, IRLD110, по мощности подбирать исходя из количества и мощности светодиодов. Для небольшой нагрузки подойдут и обычные, например, IRF540.

Сенсорная кнопка на базе микроконтроллера Attiny13

Сенсором может служить обычная металлическая пластинка, чем больше её площадь, тем больше чувствительность. Более того, поверх самой пластинки можно положить слой дерева толщиной до сантиметра, тогда схема будет реагировать на прикосновение к дереву. Не следует выносить сенсор от схемы на большое расстояние, при этом сильно падает чувствительность. При длине провода менее метра срабатывания всегда чёткие, достаточно лёгкого прикосновения. Ложных сработок не наблюдается (даже если на сенсор сядет муха, свет не включится). 

Список необходимых деталей

  • Резистор 10 кОм – 3 шт;
  • Резистор 1 кОм – 1 шт;
  • Конденсатор 10 нФ – 1 шт;
  • Конденсатор 100 нФ – 2 шт
  • Конденсатор 10 мкФ – 1 шт
  • Конденсатор 100 мкФ – 1 шт
  • Стабилизатор 78L05 – 1 шт;
  • Полевой транзистор;
  • Микроконтроллер Attiny13.

Правильно собранная схема в настройке не нуждается, требуется лишь прошить микроконтроллер. Прошивка и печатная плата прилагаются. Автор – Дмитрий С.

   Форум

   Обсудить статью СЕНСОРНАЯ КНОПКА ДЛЯ ВКЛЮЧЕНИЯ


Какие бывают сенсорные кнопки. - Мысли злого плебея — ЖЖ

03:25 am - Какие бывают сенсорные кнопки.

Прежде чем описывать как я адаптировал емкостной сенсор geagood для ситуации отсутствия фазы в выключателе, опишу основные типы сенсоров.


  1. Оптический, touch free или IR Proximity Sensor.
    Принцип работы полностью совпадает с дымовыми извещателями. Он состоит из светодиода и фотоприемника разделенной перегородкой. В результате в нормальном режиме на приемник света не попадает свет от светодиода. Когда над перегородкой появляется препятствие, от свет излучаемый светодиодом отражается от препятствия и попадает на фотоприемник, что регистрируется как "нажатие". Описание работы сенсора.
    В отверстии расположено два элемента, - ИК-светодиод и ИК - фототранзистор (оба выполнены в почти одинаковых двухвыводных корпусах). Они расположены с разных сторон печатной платы и направлены в одну сторону, - к отверстию. Печатная плата на участке между ними должна не пропускать свет, то есть, здесь должен быть участок непротравленной фольги. ИК-светодиод постоянно излучает вспышки ИК - света, с частотой около 1 кГц. Мощность излучения светодиода и чувствительность фототранзистора должны быть настроены так, чтобы оптическая система срабатывала при поднесении пальца к отверстию на расстояние около 5 мм (или больше или меньше, - в зависимости от того, как нужно в конкретном случае).


    Так как он оптический, то он мало реагирует на радиопомехи. Поэтому его используют как датчик приближения. то есть к нему не прикасаются, а проносят руку на расстоянии меньшем 10 см от сенсора.

    Несмотря на идентичность функции с proximity sensor (датчиком приближения), он называется "touch free". Таких ВДУ с питанием 230В на aliexpress нет, но сенсорные выключатели с питанием 12В есть (1, 2, 3) продавцы их рекомендуют использовать для управления дверями чистюлями боящимися инфекции от прикосновения к залапаному сенсору. Внутренности одного из них с mysku.

    Видно, что он состоит из рядом расположенных "инфракрасного пульта" и интегрального приемника его сигнала. То есть с любым из них может работать инфракрасное ПДУ, если его правильно обучить.

    Если есть желание самостоятельно что-то похожее сделать, то там же есть инфракрасные датчики (TCRT5000L) для этих целей.

    Только сделать что-то приличное будет сложнее на нем, так как интегральный приемник выделяет полезный сигнал из несущей, а транзистор этого не делает. Пример реализации с интегральным приемником.


  2. Резистивный.
    Они чувствительны к загрязнению. Его сейчас не используют, но он встречался в советских кодовых замках и некоторых цветных телевизорах. Это обычная кнопка, только контакты замыкаются пальцем. На схеме телевизоров они так даже и обозначались. Ненавистники развитого социализма это могут объяснить дефицитом кнопок в СССР. Я это утверждать не буду, так как большинство фотографий телевизоров с УСУ-1-15 (устройство сенсорного управления) было с обычными кнопками имеющими пластиковый толкатель.

    Описание сенсора используемого в кодовом замке дано в журнале радио №4, 1982 год.
    Схема отдельного сенсора оттуда.

    Сенсорную кнопку такого типа можно купить у мастеркит (nm4013).
    Фотография сенсора с его инструкции по сборке.


  3. Емкостной.
    Может быть трех типов. Буду называть по типу общеизвестного устройства в котором оно проявляется.

    1. Однополюсный указатель напряжения.
      Определить можно по блестящей металлической пластине спереди. Он реагирует на емкостной ток между фазой и землей через тело человека. Для его работы обязательно нужна фаза. В принципе это самый надежный способ по трем причинам:
      -ловится сигнал достаточной чтобы зажечь неоновую лампочку, по моим измерениям, мощность сигнала может достигать 2мкВт;
      -частота сигнала очень низкая, поэтому не влияют радиопомехи;
      -ток емкостной, а значит грязь на сенсоре не влияет на его работу.
      В моем выключателе geagood он реализован так.

      Сенсор выглядит так.

      На таком же принципе был реализованы советские выключатели с микросхемой к145ап2, только там схема сенсора немного другая. В этой ток фазы идет через выпрямитель, стабилизатор, эмиттер транзистора Q3 и резистор сопротивлением 10МОм на тело человека, а там с фазы на тело человека через три резистора сопротивлением больше 1 МОм.
      Как он выглядел. Фотографии нарыл в интернете.



    2. Щуп осциллографа.
      Если посмотреть на экран осциллографа, то при прикосновении к щупу на экране появится синусоида амплитудой . Эта синусоида появляется из-за протекания емкостного тока от фазных проводов, проложенных рядом с телом человека, через тело человека на щуп, а потом на осциллограф и наконец на землю. Физики-теоретики емкостной ток называют "током смещения", так как он проходит через изолятор. То есть такой сенсор работает по тому же принципу что и "указатель напряжения", только "направление тока" обратное. Так как в качестве "земли" здесь участвует не громадная поверхность тверди, а только тело человека, то мощность сигнала в этом случае во много раз меньше. Например, мой мультиметр с внутренним сопротивлением 10 МОм показывает напряжение равное 6В при вставлении одного конца в "ноль", а другого к пальцу. Если щуп вставить в "фазу", то он показывать будет 60В. То есть мощность сигнала падает в 100 раз. Мультиметр может показывать еще меньше, так как в другом месте и другой мультиметр с таким же внутренним сопротивлением показал 4В. Промышленные выключатели так вроде не делали и не делают, но схемы их есть в интернетах и книгах. Например "Андрей Кашкаров Сенсорный регулятор освещения с блокировкой включения [текст] / Андрей Кашкаров, Андрей Бутов // Оригинальные конструкции для радиолюбителей. - Москва: Альтекс, 2005 г. - C. 62-65" или "Бутов, А.Л. Сенсорный регулятор освещения с акустическим реле [текст] / Н.А. Бутов // Радио-конструктор. - 2009. - №9. -С. 24-26", "Кашкаров,  Электронные схемы для "Умного дома", стр. 29-33" и т.д. В интеретах и журналах гуляет две схемы превращения сенсора "указатель напряжения" в сенсор "щуп осциллографа". Обе схемы придуманы Бутовым-Кашкаровым.

      На биполярных транзисторах два варианта.

      На полевом транзисторе.

      Вероятно, они не рабочие, так как у меня подобное превращение "указателя напряжения" в "щуп осциллографа" при помощи замены биполярного транзистора на составной, привело к превращению в глючный датчик приближения. Причем срабатывать начал при приближении на расстояние 20 см. Как многие пишут в интернетах по другому и не бывает, хотя возможно у Бутова-Кашкарова получилось, так как они настраивали коэффициент усиления. В настоящее время реализовывать сенсор по их методике не имеет смысла, так как сейчас существуют специальные дешевые микросхемы емкостных сенсоров с внутренним генератором очень маленького размера. Они должны быть более устойчивы к помехам. А если делать что-то с нуля, то микроконтроллеры сейчас реализуют такие сенсоры без всякой обвязки.


    3. Тачпад, LCR-метр или терменвокс.
      В таких сенсорах измеряется электрическая емкость между пластиной сенсора и цепями питания. Для этого в них существует генератор и приемник. В этом сенсоре эта емкость изменяет частоту колебаний генератора или амплитуду сигнала. Упрощенно, это тот же самый "указатель напряжения", только частота переменного напряжения увеличена в 1000-1000000 раз, в результате сопротивление конденсатора образованного человеком и проводами питания уменьшилось в такое-же количество раз, а значит без ухудшения помехозащищенности можно в такое же количество раз уменьшить напряжение или измеряемую емкость. По такому принципу можно делать сенсорные кнопки к которым надо прикасаться, датчики приближения или датчики объема/движения. Все зависит от мощности генератора. Любопытно, что русская википедия, когда описывает тачпад, то коммуниста Термена, Ленина, Дзержинского, Сталина и архипилаг-ГУЛАГ не вспоминают, хотя первое такое устройство придумал Термен и продемонстрировал его Ленину, а потом стал работать на соловетскую власть в шарашке. Зато много букв напечатали про apple, epson, apolo и т. д. Сейчас такие сенсоры реализуются чисто программно в микроконтроллерах или при помощи дешевых микросхем. На первый взгляд может показаться, что они отвязаны от электрической сети с глухозаземленной нейтралью, но это не так, так как смартфоны подключенные к зарядному устройству сходят с ума, если в них нет связи вторичной обмотки трансформатора с первичной. Так что хотя они и устойчивее "щупа осциллографа", но "указатель напряжения" получше будет. Они чувствительны к помехам ИИП, так как работают приблизительно на тех же частотах. Я конечно имею ввиду дешевые решения. Пластина сенсора в таких устройствах изолирована от внешней поверхности, поэтому снаружи будет стекло или пластик. Как они организовываются программно надо искать по ключевым словам "mTouch", "qTouch", "QMatrix". Продаются два типа микросхем их реализующих аппаратно: ttp22x (Китай) и at42qt10xx (microchip). В интернетах рекомендуют увеличивать площадь таких кнопок при помощи подпайки к выводам микросхемы проводов/антенн, но это глупо, так как эти "антенны" снизят помехоустойчивость и даже может оказаться, что кнопка всегда нажата. Тем более длинные провода к такому сенсору противопоказаны. Даже экранировка проводов не помогает от глюков. Они подходят только для сенсора типа "указатель напряжения". Я увеличил площадь сенсора при помощи приклейки над сенсором "бутерброда"состоящего из изолятора и проводящей пластины снаружи. Таким образом в рабочем режиме емкость сенсора не сильно увеличилась, но зато прикосновение к любой части металлической пластины над сенсором приводит к эффекту равнозначному прикосновению к месту над сенсором. В качестве изолятора использовал слюденую бумагу.



  4. Индуктивный.
    Таких сенсоров не бывает, так как у всех веществ, кроме ферромагнетиков, магнитная проницаемость близка к 1. Существующие индуктивные сенсоры - это просто кнопки, в которых вместо замыкающихся контактов надо прогибать электропроводную/магнитную пластину, тем самым изменяя потери энергии в катушке над которой расположена токопроводящая пластина. Я его описал только из-за того, что может возникнуть впечатление, что я что-то пропустил, так как в теории электротехники описываются три типа пассивных компонентов: резистор, конденсатор и индуктивность. Соответственно можно предположить что существует три типа сенсорных кнопок.


В виде таблицы.

Тип сенсораВнешний видСвойстваПомехозащищенность
оптическийчерный квадрат/круг
 
1. Реагирует на расстоянии.
2. Возможно легкое подключение инфракрасного пульта.
3. Большинство рассчитано на питание 12В.
Высокая
резистивныйкак на старых советских цветных телевизорах или кодовых замках1. Чувствительный к грязи.
2. Сейчас не используется.
Высокая 
Емкостной, типа "указатель напряжения"большая металлическая платина в центреТребует наличия "фазы".Высокая
Емкостной, типа "щуп осциллографа"неизвестно, так как они есть только в литературе и интернетеНеизвестно, так как они есть только в литературе и интернете.Низкая 
Емкостной, типа "тачпад", LCR-метр или "терменвокс"стеклянная или пластмассовая пластина спереди1. Самый популярный тип, так как емкость в десятки пикофарад сейчас умеют измерять микроконтроллеры напрямую. 
2. Провода между микросхемой и сенсорной панелью должны быть очень короткими.
3. Увеличивать площадь кнопки можно только приклейкой над сенсором "бутерброда" состоящего из изолятора и электропроводной пластины.
средняя

Деревянные светильники и сенсорные кнопки для системы освещения дома


Из этой статьи, вы узнаете не только о том, как создавать простейшие деревянные светодиодные панели различной формы, но и о том, как спроектировать низковольтную систему освещения с сенсорными кнопками, из орехового дерева. С помощью кнопок можно включать, выключать, а также уменьшать яркость свечения светильников. Эта система освещения была сделана для однокомнатной квартиры, но может быть адаптирована к любому дому.

Давайте посмотрим два небольших видеоролика.


Инструменты и материалы:
-Светодиодная лента 24;
-Блок управления Systema - 3 шт;
-Емкостные датчики Systema -7 шт;
-Блок питания 24V 90W LED;
-Провода;
-Разъемы;
-Алюминиевый лист;
-Рейка;
-Ткань;
-Неодимовые магниты с отверстием;
-Металлическая полоса;
-Кронштейн;
-Крепеж;
-Доска;
-Латунная пластинка вкл/выкл;
-Светорассеиватели;


Шаг первый: дизайн светильников


Мастер решил спроектировать панели следующих 4 основных геометрических форм:
- площадь и трапеция для освещения кухни и гостиной
- пятиугольник для освещения ванной комнаты
- шестигранник для освещения спальни

Для доступа к светодиодам внешняя рамка будет крепится к основной раме магнитами. Основанием и радиатором каждой панели служит алюминиевая пластина.

Детали мастер вырезал на ЧПУ станке. Файлы для скачивания доступны ниже.
panels-wood-dimensions-building.dwg
panels-wood-dimensions-building.pdf
aluminum_cuts_dimensions.dwg
aluminum-sheet-dimensions.pdf
panels-idea-design.pdf
Шаг второй: дизайн выключателей


При разработке выключателей перед мастером стояла задача сделать их стильными вписывающимися в дизайн комнат. Кнопки сенсорные устанавливаются в деревянную основание. Кнопки имеют подсветку и светорассеиватель.

Мастер разработал два вида выключателей, с одной и с двумя кнопками. Все файлы для скачивания доступны ниже.
Touch_assembly.x_b
Touch_button.pdf
wood_support_one_touch_button.pdf
wood_support_two touch_buttons.pdf
circuit-case-&-lid-3D.stl
touch-case.stl
Cover-diffuse-back.dxf
brass-On-OFF.dxf
Cover-diffuse-front.dxf
Шаг третий: электросхема
Systema работает таким образом, что, если пользователь касается любого из сенсорных датчиков, подключенных к 2-проводной шине 24 В, все 24 В светодиодные индикатора на этой шине включатся, и если пользователь в течение некоторого времени нажимает на датчик, он затемняет все подключенные светильники и кнопки. Емкостная зона каждого датчика была подключена к латунной табличке с логотипом «вкл / выкл», это то место, к которому пользователь должен прикоснуться, для изменения освещения.

Как видно из схемы, мастер обвел пунктирными линиями все выключатели. Некоторые из них одноклавишные, некоторые двухклавишные.


illumination_system_wiring.pdf

Шаг четвертый: изготовление светильников
Для сборки панелей сначала необходимо нарезать основания из алюминия толщиной 2 мм. Края листа зачистить напильником. Затем изготавливается деревянная рамка и к ней крепится алюминиевая пластина. Внутри рамки приклеивается светодиодная лента.

В качестве абажура мастер использует подходящую ткань, закрепленную на деревянную рамку. Как писалось ранее, абажур крепится на светильнике с помощью магнитов.


Шаг пятый: изготовление выключателей
Для изготовления выключателей мастер решил использовать планки из орехового дерева.
Выключатель можно сделать вручную, или, при наличии доступа к ЧПУ-станку, вырезать на станке.
Готовые детали мастер обрабатывает пропиткой.

При наличии всех деталей мастер приступает к сборке. Припаивает два провода к светодиодной ленте 24 В. Обычно положительным является красный провод, а отрицательным - черный. Припаивает провод к латунной пластинке. Приклеивает светорассеиватель к корпусу. Припаивает провода к контактам печатной платы датчика Systema, как показано на схеме. Размещает датчик Systema в специально изготовленный для него корпус. Устанавливает крышку. Подключает датчик к системе освещения.

Для проверки сенсорной кнопки выполните действия, показанные на видео: подключите ее к блоку управления Systema и подайте питание (24 В).



Шаг шестой: подключение
Дальше мастер подключает и устанавливает выключатели в гнезда. Устанавливает светильники и блоки питания. Блоки питания нужно выбирать на 20% мощнее от расчета. Мастер рассчитал мощность блока питания для светильников каждой комнаты.

Кухня / гостиная → 35 Вт (квадрат) + 35 Вт (трапеция) = 70 Вт → 90 Вт Блок питания
Спальня → 75W (шестиугольник) → 90W блок питания
Ванная комната → 43 Вт (пятиугольник) → 60 Вт блок питания

Все блоки питания мастер установил в одной нише и закрыл декоративной решеткой.


Все готово.

Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Сенсорный выключатель на модуле TTP223

Ввиду мелкого размера микросхем TTR223 (datasheet), данный сенсорный модуль является довольно удобным выходом для тех, кто не хочет связываться с распайкой детали в корпусе SOT-23. О модуле и примере его практического применения можно прочитать ниже.

Предыстория:
пару лет назад на у китайцев был приобретен настенный двухрожковый светильник, в данный момент он не продается. Подобных изделий на Али предлагается огромное количество. Так и лежал он, так сказать про запас, до тех пор, пока не решил использовать его при ремонте ванной комнаты. Провод для светильника, перед укладкой плитки, в стену заложил, но затем встал вопрос как включать светильник? Работать он должен отдельно от основного света на потолке, т.к. там стоят яркие лампы, а когда лежишь в ванной хотелось бы мягкий рассеяный свет. В коридоре стоит трехклавишный выключатель (туалет, коридор и верхний свет в ванной), городить туда еще один отдельный выключатель для светильника смешно. Сначала думал вставить в корпус светильника выключатель на шнурке, но размеры не позволили этого сделать. Решение стало очевидным — подавать на светильник 12В с вынесенного блока питания, установить светодиодные лампы DC12 и сделать сенсорное включение прикосновением по корпусу, для чего и был приобретен описываемый модуль.

Саму микросхему уже здесь описывал koltinov, поэтому я опишу только сам модуль. Модуль представляет собой распаяную микросхему с минимальной обвязкой из конденсатора и светодиода с резистором, извещающего о срабатывании сенсора.
Так же на модуле есть пары выводов под запайку А и В. Пара А — служит для выбора уровня на выходе модуля при срабатывании — по умолчанию высокий уровень, в запаянном состоянии — низкий. Пара В — для управления типом срабатывания — по умолчанию кнопка, в запаяном состоянии триггер. Кроме того, рядом с микросхемой TTP223 имеется место под установку конденсатора от 0 до 50 пФ для снижения чувствительности сенсора, сюда же подпаивается проводок для выносного сенсора.

Таким образом, я запаял пару В (нужен высокий уровень для открытия N-канального мосфета), поставил конденсатор 0805 на 30пФ и сначала сделал вывод на корпус светильника. Не тут то было, из за размера корпуса нет четкого срабатывания, включение происходит крайне не стабильно, в том числе в зависимости от того, раскрыта кисть или вытянут один палец — может сработать при положении руки за 20 см от светильника, а может не сработать при прямом прикосновении. Установка конденсаторов различных номиналов ничего не дала, чувствительность менялась, но нестабильноть работы так и оставалась. Пришлось винтик и декоративную шишечку, с помощью которых светильник крепиться к внутреннему кронштейну (а тот соответственно к стене) изолировать от основного корпуса с помощью прокладки из текстолитовой шайбы, силиконовой резинки (от какого то винчестера) и кусочка термоусадки.

Вывод на сенсор подпоял к этому винтику. Модуль срабатывает четко, только от прикосновения к маленькой шишечке (человек со стороны и не поймет как лампу включить). Т.е. при его использовании не следует стремиться к сенсору большой площади. Платка легко помещается внутрь корпуса, туда же сунул 7805 для запитки модуля и мосфет 60N03L в качестве реле для светодиодных ламп, все оголенные проводки и выводы покрыл цапон-лаком и приклеил изнутри к корпусу на термоклей.

Найти подходящую лампу оказалось не так просто, абажуры устанавливаются на лампы и держатся за счет ее формы, а ламп на DC12В с цоколем Е14 в форме капли можно сказать и нет. Хотел уж было лампочку на 220 В переделывать, но потом нашел эти, взял на 3Вт, 4000К. При 12В потребляет 0,26 мА, что соответствует заявленной мощности.

Судя по коробочке, производитель изготавливает лампочки всеразличных цветов, мощностей, на разные цоколи и напряжения

В качестве источника питания применил блок питания на 12В 1А, его описывал Kirich в своем обзоре.


Заодно сделал подсветку под тумбой с умывальником. Я как то описывал микроволновый датчик движения, применял его тогда для скрытой установки за пластиковой дверцей. Но в данном случае из под тумбы есть прямая видимость, поэтому использовал всем известные ультразвуковой датчик SRF-05, Ардуино Nano и тот же мосфет 60N03L, что получается в два раза дешевле. В качестве источника света использовал такой светодиодный модуль

Я его не покупал, а взял с рекламного проспекта, с выставки

Для точечной скрытой подсветки такие модули самое то, мне понравилось. На Али наверняка есть что то подобное.

По настоящему свет гораздо мягче чем на фото, при этом видно все помещение, если зашел что то взять или положить — основой свет можно не включать. На ощупь он греется слегка, сзади металлическая пластина, приклеил к холодной плитке на стену и никакого перегрева. Подобные модули рекомендую всем, гораздо удобнее лены + гидроизоляция.

Схема в светильнике:

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments