Кв трансивер своими руками: Схемы самодельных радиолюбительских кв трансиверов. Показать содержимое по тегу: трансивер. Кликние для увиличения

Содержание

Схемы самодельных радиолюбительских кв трансиверов. Показать содержимое по тегу: трансивер. Кликние для увиличения

Ламповый трансивер - это устройство, которые предназначено для передачи сигналов определенной частоты. Как правило, он используется в качестве приемника. Основным элементом трансивера принято считать трансформатор, который соединяется с катушкой индуктивности. Особенность ламповых модификаций заключается в стабильности передачи низкочастотного сигнала.

Дополнительно они отличаются наличием мощных конденсаторов и резисторов. Контроллеры в устройстве устанавливаются самые разнообразные. Для устранения различных помех в системе применяются электромеханические фильтры. На сегодняшний день многие заинтересованы в установке маломощных трансиверов на 50 Вт.

Трансиверы короткой волны (КВ)

Чтобы сделать трансивер КВ своими руками, необходимо использовать трансформатор малой мощности. Дополнительно следует позаботиться об усилителях. Как правило, в этом случае проходимость сигнала значительно увеличится. Чтобы была возможность бороться с помехами, в устройстве устанавливают стабилитроны. Используются чаще всего трансиверы данного типа в телефонных станциях. Некоторые делают КВ трансивер своими руками (ламповый), используя катушку индуктивности, которая должна выдерживать сопротивление максимум 9 Ом. Проверяется прибор всегда по первой фазе. В данном случае контакты необходимо выставить в верхнее положение.

Антенна и блок для трансивера КВ

Антенна для трансивера своими руками делается с применением различных проводников. Дополнительно требуется пара диодов. Пропускная способность антенны проверяется на маломощном передатчике. Еще для устройства требуется такой элемент, как геркон. Он необходим для передачи сигнала на внешнюю обмотку катушки индуктивности.

Устройства ультракороткой волны (УКВ)

Сделать УКВ-трансивер своими руками довольно сложно. В данном случае проблема заключается в поиске нужной катушки индуктивности. Работать она обязана на Конденсаторы лучше всего использовать различной емкости. Для смены фазы применяются только контроллеры. Использование многоканальной модификации для трансиверов не целесообразно. Дроссели в системе необходимы с высокой частотой, а для увеличения точности устройства применяются стабилитроны. Устанавливаются они в трансиверах только за трансформатором. Чтобы транзисторы не перегорали, некоторые специалисты советуют припаивать электромеханические фильтры.

Модели трансиверов длинной волны (ДВ)

Сделать длинноволновые ламповые трансиверы своими руками можно только с участием мощных трансформаторов. Контроллер в этом случае должен быть рассчитан на шесть каналов. Смена фазы приемника осуществляется через модулятор, который работает на частоте 50 Гц. Чтобы минимизировать помехи на линии, фильтры используются самые разнообразные. Повысить проводимость сигнала у некоторых получается за счет использования усилителей. Однако в такой ситуации следует позаботиться о наличии емкостных конденсаторов. Транзисторы в системе важно устанавливать за трансформатором. Все это позволит повысить точность устройства.

Особенности устройств средней волны (СВ)

Сделать средневолновые ламповые трансиверы своими руками самостоятельно довольно сложно. Работают указанные приборы на светодиодных индикаторах. Лампочки в системе устанавливаются попарно. Катоды в данном случае важно закреплять непосредственно через конденсаторы. Решить проблему с повышением полярности можно за счет применения дополнительной пары резисторов на выходе.

Для замыкания цепи используется реле. Антенна к микросхеме всегда крепится через катод, а мощность устройства определяется через напряжение в трансформаторе. Встретить чаще всего трансиверы данного типа можно на самолетах. Там управление осуществляется через панель или дистанционно.

Антенна и блок для трансивера СВ

Сделать антенну для трансивера данного типа можно, используя обычную катушку. Внешняя обмотка ее должна соединяться с усилителем на выходе. Проводники в данном случае необходимо припаивать к диоду. Приобрести его в магазине не составит особого труда.

Чтобы сделать блок для трансивера данного типа, используется реле, а также генератор на 50 В. Транзисторы в системе применяются только полевые. Дроссель в системе необходим для соединения с контуром. Проходные конденсаторы в блоках данного типа используются очень редко.

Модификация трансивера УКВ-1

Сделать данный трансивер своими руками на лампах можно с применением трансформатора на 60 В. Светодиоды в схеме задействуются с целью распознавания фазы. Модуляторы в устройстве устанавливаются самые разнообразные. трансивером выдерживается за счет мощного усилителя. В конечном счете сопротивление трансивером обязано восприниматься до 80 Ом.

Чтобы устройство успешно прошло калибровку, важно очень точно настроить положение всех транзисторов. Как правило, замыкающие элементы ставятся в верхнее положение. В данном случае тепловые потери будут минимальными. В последнюю очередь накручивается катушка. Диоды на ключах в системе проверяются перед включением обязательно. Если соединение их будет плохим, то рабочая температура резко может повыситься от 40 до 80 градусов.

Как сделать трансивер УКВ-2?

Чтобы правильно сложить трансивер своими руками, трансформатор необходимо взять на 60 В. Предельную нагрузку он обязан выдерживать на уровне 5 А. Для повышения чувствительности устройства используются только качественные резисторы. Емкость одного конденсатора обязана равняться как минимум 5 пФ. Калибруется устройство в конечном счете через первую фазу. При этом замыкающий механизм сначала выставляется в верхнее положение.

Включать блок питания необходимо, наблюдая за системой индикации. Если предельная частота будет превышать 60 Гц, значит, происходит снижение номинального напряжения. Проводимость сигнала в данном случае можно повысить за счет электромагнитного усилителя. Устанавливается он, как правило, рядом с трансформатором.

Модели КВ с медленной разверткой

Сложить трансивер КВ своими руками не представляет никакой сложности. В первую очередь следует подобрать необходимый трансформатор. Как правило, используются импортные модификации, которые способны выдерживать максимальную нагрузку до 4 А. В этом случае конденсаторы подбираются, исходя из показателя чувствительности устройства. в трансиверах встречаются довольно часто. Однако они не лишены недостатков. Главным образом они связаны с большой погрешностью на выходе.

Происходит это из-за повышения рабочей температуры на внешней обмотке. Чтобы решить эту проблему, транзисторы можно использовать с маркировкой ЛМ4. Показатель проводимости у них довольно хороший. Модуляторы для трансиверов данного типа подходят только на две частоты. Соединение ламп происходит стандартно через дроссель. Чтобы добиться быстрой смены фазы, усилители в системе необходимы только в начале цепи. Для улучшения производительности приемника, антенна подсоединяется через катод.

Многоканальная модификация трансивера

Сделать многоканальный трансивер своими руками можно только при участии высоковольтного трансформатора. Предельную нагрузку он обязан выдерживать до 9 А. В этом случае конденсаторы используются только с емкостью свыше 8 пФ. Повысить чувствительность устройства до 80 кВ практически невозможно, это следует учитывать. Модуляторы в системе применяются на пять каналов. Для смены фазы используются микросхемы класса ППР.

Трансивер СДР прямого преобразования

Чтобы сложить СДР трансивер своими руками, важно использовать конденсаторы с емкостью свыше 6 пФ. Во многом это связано с высокой чувствительностью устройства. Дополнительно указанные конденсаторы помогут при отрицательной полярности в системе.

Для хорошей проводимости сигнала требуются трансформаторы как минимум на 40 В. При этом нагрузку они должны выдерживать около 6 В. Микросхемы, как правило, рассчитаны на четыре фазы. Проверка трансивера начинается сразу с предельной частоты в 4 Гц. Чтобы справляться с электромагнитными помехами, резисторы в устройстве используются полевого типа. Двухсторонние фильтры в трансиверах встречаются довольно редко. Максимальное напряжение на второй фазе передатчик обязан выдерживать на уровне 30 В.

Для повышения чувствительности устройства применяются переменные усилители. Работают они в трансиверах на пару с резисторами. Для преодоления задействуются стабилизаторы. В цепи анода лампы устанавливаются последовательно через дроссель. В конечном счете в устройстве проверяется замыкающий механизм и система индикации. Делается это по каждой фазе отдельно.

Модели трансиверов с лампами Л2

Собирается простой трансивер своими руками с применением трансформатора на 65 В. Модели с указанными лампами отличаются тем, что проработать способны много лет. Параметр рабочей температуры у них в среднем колеблется в районе 40 градусов. Дополнительно следует учитывать, что соединяться с однофазными микросхемами они не способны. Модулятор в данном случае лучше устанавливать на три канала. Благодаря этому показатель рассеивания будет минимальным.

Дополнительно можно избавиться от проблем с отрицательной полярностью. Конденсаторы для таких трансиверов применяются самые разнообразные. Однако в данной ситуации многое зависит от предельной мощности блока питания. Если рабочий ток на первой фазе превышает 3 А, то минимальный объем конденсатора должен составлять 9 пФ. В результате можно будет рассчитывать на стабильную работу передатчика.

Трансиверы на резисторах МС2

Для того чтобы правильно сложить трансивер своими руками с такими резисторами, важно подобрать хороший стабилизатор. Устанавливается он в устройстве рядом с трансформатором. Резисторы данного типа способны выдерживать максимальную нагрузку около 6 А.

По сравнению с другими трансиверами это довольно много. Однако расплатой за это является повышенная чувствительность устройства. Как следствие, модель способна давать сбои при резком повышении напряжения на трансформатор. Чтобы минимизировать тепловые потери, в устройстве задействуется целая система фильтров. Располагаться они должны перед трансформатором, чтобы сопротивление в конечном счете не превышало 6 Ом.

В таком случае показатель рассеивания будет незначительным.

Устройство однополосной модуляции

Собирается трансивер своими руками (схема показана ниже) из трансформатора на 45 В. Модели данного типа чаще всего можно встретить на телефонных станциях. Однополосные модуляторы по своей структуре являются довольно простыми. Переключение по фазе в данном случае осуществляется напрямую через смену положения резистора.

Предельное сопротивление при этом резко не снижается. В результате чувствительность прибора всегда остается в норме. Трансформаторы для таких модуляторов подходят с мощностью не более 50 В. Использовать полевые конденсаторы в системе специалистами не рекомендуется. Гораздо лучше, с точки зрения экспертов, воспользоваться обычными аналогами. Калибровка трансивера осуществляется только на последней фазе.

Модель трансиверов на усилителе РР20

Сделать трансивер своими руками на усилителе данного типа можно с использованием полевых транзисторов. Сигналы передатчик в этом случае будет передавать только коротковолновые. Антенна у таких трансиверов подсоединяется всегда через дроссель. трансформаторы обязаны выдерживать на уровне 55 В. Для хорошей стабилизации тока применяются низкочастотные катушки индуктивности. Для работы с модуляторами они подходят идеально.

Микросхему для трансивера лучше всего подбирать на три фазы. С вышеуказанным усилителем он эксплуатируется хорошо. Проблемы с чувствительностью у аппарата возникают довольно редко. Недостатком данных трансиверов можно смело назвать низкий коэффициент рассеивания.

Трансиверы с антеннами несимметричного питания

Трансиверы данного типа на сегодняшний день встречаются довольно редко. Связано это в большей степени с низкой частотой выходного сигнала. В результате отрицательное сопротивление у них порой достигает 6 Ом. В свою очередь предельная нагрузка на резистор оказывается в районе 4 А.

Чтобы решить проблему с отрицательной полярностью, применяются специальные переключатели. Таким образом, смена фазы происходит очень быстро. Настроить эти приборы можно даже на дистанционное управление. Вышеуказанная антенна на реле устанавливается с маркировкой К9. Дополнительно в трансивере должна быть хорошо продумана система индуктивности.

В некоторых случаях устройство выпускается с дисплеем. Высокочастотные контуры в трансиверах также являются не редкостью. Проблемы с колебаниями в цепи решаются за счет стабилизатора. Устанавливается он в устройстве всегда над трансформатором. Находиться они друг от друга при этом обязаны на безопасном расстоянии. Рабочая температура прибора должна быть в районе 45 градусов.

В противном случае неизбежен перегрев конденсаторов. В конечном счете это приведет к неминуемой их порче. Учитывая все вышесказанное, корпус для трансивера должен хорошо вентилироваться воздухом. Лампы к микросхеме стандартно крепятся через дроссель. В свою очередь реле модулятора должно соединяться с внешней обмоткой.


Рассмотрим 3 лучшие рабочие схемы трансиверов. Первый проект предполагает создание самого простого прибора. По второй схеме можно собрать рабочий КВ трансивер на 28 МГц с мощностью передатчика 0,4 Вт. Третья модель - полупроводниково-ламповый трансивер. Давайте разбираться по порядку.

  • Смотрите также 3 рабочие для монтажа своими руками

Простой, самодельный трансивер: схема и монтаж своими руками

Слово трансивер у многих начинающих радиолюбителей ассоциируется со сложнейшим устройством. Но есть схемы, которые имея всего 4 транзистора, способны в телеграфном режиме обеспечить связь на сотни километров.

Изначально представленная ниже принципиальная схема трансивера была рассчитана под высокоомные наушники. Пришлось немного переделать усилитель, чтоб была возможность работать и с низкоомными наушниками 32 Ом.

Принципиальная схема простого трансивера на 80м

Моточные данные контура:

  1. Катушка L2 имеет индуктивность 3.6 мкГ - это 28 витков на оправе 8 мм, с подстроечным сердечником.
  2. Дроссель - стандартный.

Как настроить трансивер?

В особо сложной настройке приёмопередатчик не нуждается. Всё просто и доступно:

Начинаем с УНЧ, подбором резистора R5 устанавливаем на коллекторе транзистора + 2В и проверяем работоспособность усилителя, коснувшись пинцетом входа - в наушниках при этом должен прослушиваться фон.

Затем переходим к настройке кварцевого генератора, убеждаемся, что генерация идет (это можно сделать с помощью частотомера или осциллографа снимая сигнал с эмиттера vt1).

Следующий этап - это настройка трансивера на передачу. Вместо антенны вешаем эквивалент - резистор 50 Ом 1 Вт. Параллельно ему подключаем ВЧ вольтметр, при этом включаем трансивер на передачу (нажатием ключа), начинаем вращать сердечник катушки L2 по показаниям ВЧ вольтметра и добиваемся резонанса.

Вот в принципе и все! Не следует ставить мощный выходной транзистор, с прибавкой мощности появляются всевозможные свисты и возбуждения. Этот транзистор играет две роли - как смеситель при приеме и как усилитель мощности при передаче, так что кт603 здесь за глаза будет.

  • Читайте также, как сделать
И, наконец, фото самой конструкции:


Так как рабочие частоты всего несколько мегагерц, можно применить любые ВЧ транзисторы соответственной структуры.

Печатную плату можно скачать ниже:

Файлы для скачивания:

КВ трансивер на 28 МГц с мощностью передатчика 0,4 Вт

Рассмотрим подробно принципиальную схему самодельного коротковолнового трансивера на диапазон частот 28 МГц, с выходной мощностью передатчика 400 милливат.

Принципиальная схема трансивера


Приемник трансивера является обычным сверхрегенеративным детектором. Единственной его особенностью можно считать переменный резистор R11, который облегчает настройку. При желании его можно вынести на лицевую панель трансивера.

Чувствительность приемника повышена за счет применения в усилителе 34 микросхемы К174УН4Б, которая при питании от батареи напряжением 4,5 В развивает мощность 400 мВт.

Цепь громкоговорителя соединена с минусом источника питания, что позволило упростить коммутацию с цепью микрофона и использовать спаренную кнопку, которой в режиме передачи отключаются громкоговоритель и питание приемника, а в режиме приема подключаются микрофон и питание передатчика. На схеме кнопка SA1 показана в положении приема.

  • Схема самодельного
Передатчик собран на двух транзисторах и представляет собой двухтактный автогенератор с кварцевой стабилизацией в цепи обратной связи. Относительно стабильная частота автогенератора позволяет при небольшой мощности передатчика добиться достаточно большого радиуса связи с однотипной радиостанцией.

Детали и конструкция КВ трансивера

В трансивере применены резисторы МЛТ-0,125 и конденсаторы К50-6.

Транзистор VT1 можно заменить на ГТ311Ж, КТ312В, а транзисторы VT2, VT3 - на ГТ308В, П403. Условия замены транзисторов следующие: VT1 должен иметь как можно больший коэффициент усиления на граничной частоте, а транзисторы VT2 и VT3 - иметь одинаковый коэффициент передачи тока.

Контурные катушки L1 и L2 намотаны на каркасах диаметром 5 мм. Они имеют подстроенные сердечники из карбонильного железа диаметром 3,5 мм. Катушки заключены в экраны размером 12x12x17 мм.

Экран катушки L1 соединен с минусом батареи питания, a L2 - с плюсом. Обе катушки намотаны проводом ПЭВ диаметром 0,5 мм и имеют по 10 витков каждая.

При изготовлении катушек L1 и L2 можно использовать контуры от тракта ПЧ телевизоров. Именно такой же каркас длиной 25 мм и диаметром 7,5 мм используется при изготовлении катушек L3 и L4. На плате они располагается горизонтально.

Намотка катушки L3 ведется с шагом 1 мм, катушка имеет 4 + 4 витка провода ПЭВ диаметром 0,5 мм с отводом от середины, расстояние между половинами обмотки - 2,5 мм.

Катушка L4 содержит 4 витка того же провода, мотается виток к витку и расположена между половинами обмотки катушки L3. Дроссели L5 и L6 намотаны на резисторах промышленного изготовления от трактов ПЧ старых телевизоров.

Громкоговоритель можно применить любой с сопротивлением 8 Ом. Подойдут громкоговорители типа 0ДГД-8, 0ДГД-6; 0,25ГДШ-3.

Трансформатор Т1 наматывается на любом малогабаритном магнитопроводе, например, типа ШЗхб, и содержит в первичной обмотке 400 витков провода ПЭВ диаметром 0,23 мм, во вторичной - 200 витков того же провода.

  • Пошаговая сборка
В качестве микрофона используется малогабаритный капсюль ДЭМШ-1а. Антенна - телескопическая, имеет длину 105 мм. В качестве источника питания применяется батарея из четырех элементов типа А316, А336, А343.

Налаживание

Настраивать трансивер необходимо с УЗЧ. Отпаяв резистор R5, в разрыв цепи SA2 подключают миллиамперметр. Ток в режиме покоя не должен превышать 5 мА.

При касании отверткой точки А в громкоговорителе должен появляться шум. Если усилитель самовозбуждается, то сопротивление резистора R4 необходимо повышать до 1,5 кОм, но при этом помнить, что чем выше номинал резистора, тем ниже чувствительность усилителя.

Если шума нет, необходимо перемещать движок резистора R11 из верхнего (по схеме) положения в нижнее. Должен появиться громкий устойчивый шум, что говорит о хорошей работе сверхрегенеративнного детектора.

Дальнейшая настройка приемника производится только после настройки передатчика и заключается в подгонке емкости конденсатора С5 (грубая настройка) и индуктивности L1 (точная настройка) к режиму наилучшего приема сигнала передатчика.

При настройке передатчика необходимо в разрыв цепи «х» включить миллиамперметр и величину сопротивления R6 подобрать такой, чтобы ток в этой цепи был равен 40–50 мА.

Затем надо подключить миллиамперметр с пределом измерения 50 мкА к плюсовой шине передатчика, а другой конец прибора через диод и конденсатор 1(>-20 пФ - к антенне.

Подстройка элементов L3, L4, С17, L2 и С18 ведется до максимального отклонения стрелки прибора. Причем грубо настраивают конденсаторами, а точнее - сердечниками контуров.

Подстрочник катушки L3–L4 должен находиться не далее ±3 мм от среднего положения, так как в крайних его точках может срываться генерация из-за нарушения симметрии плеч транзисторов VT2 и VT3.

Настраивая при выдвинутой антенне L2 и С18 по максимальному отклонению стрелки прибора, необходимо добиться полного согласования антенны и передатчика.

Если при включении передатчика внезапно срывается генерация, то это свидетельствует о неправильной настройке. В таком случае необходимо снова подобрать режимы работы VT2 и VT3, тщательно настроить L2, L3, L4, а если это не поможет, то подобрать транзисторы с более близкими параметрами.

Двухдиапазонный лампово-полупроводниковый трансивер

Этот трансивер можно выполнить на любой диапазон от 1.8 до 10 МГц и увеличить мощность, если сильно надо. Он построен по схеме с «одним преобразованием».

Частота ПЧ = 5,25 МГц. Выбор частоты ПЧ обусловлен тем, что при частоте гетеродина 8,75–9,1 МГц перекрывается сразу два диапазона 3,5 и 14 МГц.

В этой схеме применен самодельный лестничный 7-ми кристальный кварцевый фильтр по схеме, предложенной Kirs Pinelis (YL2PU) в известном трансивере DM2002.

Оба диодных смесителя выполнены по классической схеме с применением трансформаторов с объемным витком связи.

Схема трансивера


Схема разработана на 5 пальчиковых лампах. Она включает регулируемый усилитель высокой и промежуточной частоты, балансный смеситель и гетеродин. Пройдем по схеме по порядку.

В режиме приема сигнал через полосовые фильтры L1–L2 подается на УВЧ, выполненный на лампе 6К13П. Далее он подается на первый смеситель тракта, выполненный по кольцевой схеме. На один из входов смесителя подается сигнал с первого гетеродина. Полученный сигнал промежуточной частоты подается на кварцевый фильтр, через согласующий контур.

Данная схема согласования позволяет несколько уменьшить потери на участке первый смеситель - УПЧ. Затем сигнал ПЧ усиливается в реверсивном усилителе на лампе 6Ж9П. Усиленный сигнал, выделяясь на контуре L5, подается на второй смеситель тракта, выполненный по кольцевой схеме, выполняющий роль детектора SSB сигнала.

НЧ - сигнал выделяется на RC-цепочке и подается на пентодную часть 6Ф12П, выполняющую роль предварительного УНЧ. Триодная часть в режиме приема выполняет роль катодного повторителя для системы АРУ. УМ УНЧ (он же УМ передатчика) выполнен на пентоде 6П15П.

В режиме передачи все каскады приемника реверсируются с помощью реле РЭС-15 с паспортом 004 (лучше применить более надежные реле). Переключение режимов прием/передача осуществляется переключателем PTT.

Особенности подбора компонентов

Дроссели применены обычные Д-0,1.

Трансформаторы ТР1–ТР3 выполнены на ферритовых кольцах 1000НН внешним диаметром 10–12 мм и содержат 15 витков скрученного втрое (для ТР1 и ТР2) провода ПЭЛ-0,2 и вдвое для ТР3.

Звуковой (выходной) трансформатор любой с коэффициентом трансформации от 2,5 кОм до 8 Ом. Силовой трансформатор применен с габаритной мощностью 70 Вт.

Катушки L1–L3 намотаны проводом ПЭЛ-0,25 и содержат по 30 витков. Катушки L4–L5 содержат по 55 витков ПЭЛ-0,1, все катушки связи намотаны проводом ПЭЛШО 0,3 на бумажных гильзах поверх соответствующих контурных катушек, а количество витков выражено на схеме соотношением для каждого случая.

Катушка L6 имеет 60 витков проводом 0,1 (для всех контуров возможно использовать каркасы от контуров ПЧ ламповых телевизоров серии УНТ).

Катушка ГПД применена от приемника Р–326, при самостоятельном изготовлении (что очень трудоемко) выполняется на 18 мм керамическом каркасе проводом ПЭЛ 0,8 15 витков с шагом 0,5 мм. Отводы от 3 и 11 витков с (холодного) конца. Катушка П-контура выполнена на каркасе диаметром 30 мм и имеет 26 витков провода ПЭЛ 0,8, отвод для 14 МГц подбирается экспериментально.

Настройка лампового трансивера

Не рассматривая вопросы настройки самодельных кварцевых фильтров, что рассмотрено во многих публикациях, остальное налаживание схемы достаточно просто. Проверка работоспособности УНЧ возможна как на слух, так и осциллографом. Затем подгоняют частоту кварцевого гетеродина катушкой L6 до требуемой (точка -20 дБ на скате кварцевого фильтра). Затем грубо устанавливаем чувствительность тракта поочередной настройкой контуров ДПФ и ПЧ по максимальному шуму в громкоговорителе. Потом можно точнее настроить контура при приеме сигналов с эфира, либо использовать ГСС.

Далее переходим в режим передачи. Переменным резистором «баланс» устанавливаем минимум напряжения несущей после смесителя (используем осциллограф или милливольтметр). Затем с помощью контрольного приемника регулируем переменный резистор 22 кОм до получения качественной модуляции.

Настройка генератора плавного диапазона

Следует убедиться, что ГПД генерирует высокочастотные колебания. Здесь могут быть полезны частотомер (цифровая шкала) и осциллограф.

Застабилизировав напряжение, питающее генератор плавного диапазона, переходят к его настройке. Ее следует начать с внешнего осмотра ГПД в ходе которого необходимо убедиться, что все конденсаторы применены типа СГМ группы «Г». Это очень важно, так как их нестабильность емкости или температурного коэффициента будет отражаться на общей стабильности частоты генератора.

Требования к качеству контурной катушки ГПД общеизвестны. Это одна из важнейших деталей аппарата. Никаких катушек сомнительного качества здесь применять нельзя! Очень ответственно следует отнестись к подбору конденсаторов, составляющих контур ГПД. Это конденсаторы типа КТ, один - красного или голубого цвета, а другой - синего. Соотношение их емкостей, дающих суммарную емкость в 100 пФ, подбирается с применением способа нагрева монтажа и шасси, о чем будет ниже.

Приступают к укладке границ частот, генерируемых генератором плавного диапазона. В рамках этой работы, добиваются чтобы при полностью введенных пластинах конденсатора переменной емкости (КПЕ), ГПД генерировал частоту примерно 8,75 МГц. Если она окажется ниже, емкость конденсаторов необходимо несколько уменьшить, если выше - увеличить. Первоначально при подборе этой емкости обращают относительное внимание и на соотношение цветов, составляющих ее конденсаторов.

При полностью выведенных пластинах КПЕ (минимальная емкость), ГПД должен генерировать частоту близкую к 9,1 МГц. Частоту ГПД контролируют по частотомеру (цифровой шкале), подключенному к выводу для цифровой шкалы.

Завершив укладку частотного диапазона ГПД, приступают к термокомпенсации этого генератора, заключающейся в подборе соотношения емкостей конденсаторов красного и синего цветов, составляющих емкость контура. Эта работа производится при помощи упоминавшегося ранее частотомера, обеспечивающего точность измерения частоты не хуже 10 Гц. Перед работой с частотомером он должен быть хорошо прогрет.

Включается трансивер и прогревается 10–15 минут. Затем, используя настольную лампу, медленно разогревают детали и шасси ГПД. Причем разогревать лучше не их непосредственно, а участок, несколько удаленный от ГПД, находящийся, примерно, между ГПД и выходной генераторной лампой. При достижении в районе ГПД температуры 50–60 градусов, отмечают в какую сторону ушла частота ГПД. Если увеличилась - температурный коэффициент конденсаторов, составляющих контур, отрицательный и значителен по абсолютной величине. Если уменьшилась - коэффициент или положителен, или отрицателен, но мал по абсолютному значению.

Как уже упоминалось, применены конденсаторы типа КТ с различными зависимостями обратимого изменения емкости при изменении температуры. Конденсаторы с положительным ТКЕ (температурный коэффициент емкости) имеют синий или серый цвет корпуса. Нейтральный ТКЕ у голубых конденсаторов с черной меткой. Голубые конденсаторы с коричневой или красной меткой имеют умеренный отрицательный ТКЕ. И наконец, красный корпус конденсатора свидетельствует о значительном отрицательном ТКЕ.

Дав узлу полностью остыть, заменяют конденсаторы, изменив их температурный коэффициент в нужную сторону, сохранив прежней суммарную емкость. При этом следует постоянно проверять сохранность произведенной ранее укладки частот ГПД.

Эти операции следует повторять до тех пор, пока не будет достигнуто того, что при повышении температуры ГПД на 35–40 градусов будет вызываться сдвиг частоты ГПД не более чем на 1 кГц.

Это означает, что частота трансивера при его прогреве в процессе нормальной работы не будет уходить более чем на 100 Гц за 10–15 минут.

Дополнительную стабильность обеспечит ЦАПЧ примененной ЦШ (Макеевская).

Опорный кварцевый генератор выполнен транзисторе КТ315Г и в комментариях не нуждается. Выполнять его на дополнительной лампе нет смысла.

Описание готового трансивера, печатные платы, фото

Печатная плата трансивера - размер 225 на 215 мм:


Переднюю панель делаем следующим образом:
  1. На прозрачной пленке на лазерном принтере печатаем панельку 1:1.
  2. Затем обезжириваем её и наклеиваем двухсторонний скотч (продается на строительных рынках). Так как ширины скотча не хватает на всю панель, наклеиваем несколько полосок.
  3. Потом снимаем со скотча верхнюю бумагу и клеим нашу пленку. Тщательно разравниваем.
  4. Затем скальпелем вырезаем отверстия под переменные резисторы, кнопки и т. п. Под дисплей вырезать не нужно.
На этом всё!

Вид полупроводниково-лампового трансивера внутри:


Внешний вид трансивера:


Видео о том, как собрать мини-трансивер на двух транзисторах своими руками:

Развитием темы в приемопередающей аппаратуре является схема основного блока трансивера на радиолюбительский диапазон 160 м. Схема представлена на рисунке ниже (кликните по картинке для увеличения).

Устройство представляет собой полноценный трансивер, использующий однополосную модуляцию. Для его практического использования достаточно подключить внешний УНЧ и УМ - усилитель мощности выходного сигнала.

Гетеродин блока работает в диапазоне частот 2300-2500 кГц. На выходе устройства формируется однополосный сигнал диапазона 1800- 2000 кГц (160 м). Для перехода с приема на передачу на реле К1 и К2 подают напряжение 12 В.

Катушки полосовых фильтров помещены в броневых сердечниках СБ-9. Катушки L2, L3, L6 и L7 содержат по 30 витков ПЭВ 0,2 с отводом от 10-го витка (кроме L3, у нее отвод от 15-го витка). Катушка гетеродина L4 намотана на пластмассовом каркасе диаметром 8 мм с подстроенным сердечником СЦР (от контура УПЧИ черно-белого лампового телевизора). Она содержит 40 витков ПЭВ 0,2. Катушки L1 и L5 - дроссели на СБ-9, имеют по 100 витков ПЭВ 0,09.

Назначение выводов микросхемы SA612A:

1,2 - вход УПЧ;
3 - общий;
4 - выход смесителя;
5 - вывод контура гетеродина;
6, 7 - вход тракта AM УВЧ;
8 - выход демодулятора;
9 - вход УНЧ;
10 - блокировка УНЧ;
11 - общий;
12 - выход УНЧ;
13 - питание;
14 - вход демодулятора;
15 - выход УПЧ;
16 - блокировка АРУ (выход УПЧ).

А.Тарасов (UT2FW)
Радиолюбитель. KB и УКВ 10/97

Каких-либо уникальных решений этот узел не имеет, схемотехника - вариации на тему TRX RA3AO и Урал-84М. Главные требования при выборе конструкции - повторяемость, простота при сохранении максимально достижимых характеристик. Использована доступная на сегодняшний день элементная база. Многие решения можно подвергнуть критике - творческий процесс бесконечен, за постоянными переделками и усовершенствованиями сложно увидеть законченный вариант, но нужно было остановиться и изготовить промышленным способом печатные платы.

Изначально трансивер задумывался для работы SSB как основным видом излучения. Для сужения полосы пропускания введен четырехкристальный подчисточный фильтр с регулировкой полосы. Для любителей узкополосного приема можно рекомендовать, как это делается в фирменных TRX, идти на дополнительные затраты по изготовлению или приобретению высококачественных узкополосных кварцевых фильтров. Как правило, самодельный лестничный фильтр из кварцев, наиболее популярных в среде радиолюбителей, имеет недостаточные характеристики для качественного узкополосного приема. Для этих целей нужно делать фильтр по дифференциально-мостовой схеме или использовать кварцы очень высокого качества. Можно купить комплект фирменных фильтров, хотя по стоимости они будут сопоставимы со всеми остальными затратами на трансивер.

Вариант "преобразования вверх" не рассматривался из-за отсутствия достаточно простой и отработанной схемы синтезатора частоты. Этот вариант построения имеет смысл в устройстве с непрерывным перекрытием от 1 до 30 МГц, а для работы в девяти узких любительских диапазонах приемлемую избирательность можно обеспечить более дешевой ПЧ 5...9 МГц.

Многие испытывают проблемы с подавлением несущей не менее чем на 40 дБ при формировании SSB сигнала непосредственно на ПЧ. Мне кажется, что эта проблема больше надумана, нежели она есть на самом деле. Практически во всех дешевых фирменных трансиверах формирование происходит на ПЧ 8...9 МГц. Думаю, вряд ли кто-то услышит неподавленную несущую например в TRX FT840 или TS50. Качество узла формирователя SSB сигнала зависит от грамотности и настойчивости изготовителя. Отличные характеристики можно получить используя простейший модулятор на варикапах, как это сделано в TRX Урал-84. Только не нужно стремиться получать от модулятора уровни, достаточные для раскачки выходного каскада - тогда подавить несущую не удается.

При отработке основной платы использовались элементы, которые можно найти практически на любом радиорынке. Что-то особенное, с позолоченными выводами, с индексом ВП исключалось сразу же. Например, требуемый коэффициент усиления можно получить от двух каскадов на импортных BF980. Но они не всегда бывают в продаже, поэтому использованы отечественные аналоги КП327, хотя они и имеют худшие параметры. В плате отсутствуют какие-либо незаменимые детали. Чувствительность со входа платы, которой можно достичь без тщательной отладки индивидуально каждого каскада - 0,2...0,3 мкВ, при подборе деталей и тщательной настройке - 0,08...0,1 мкВ. Один из трансиверов с такой основной платой и синтезатором, описанным в , имел при отключенном УВЧ чувствительность 0,4 мкВ и двухсигнальную избирательность при подаче двух сигналов с разносом 8 кГц, 95 дБ. Измерения проведены UT5TC. Это не предельные величины, т.к. в трансивере были применены входные полосовые фильтры на каркасах диаметром 6 мм с довольно высоким затуханием и обычные высокочастотные диоды в смесителе. Хотя, как показывает опыт, в трансиверах, которые предназначены для обычной повседневной работы в эфире, не следует гнаться за цифрами динамического диапазона. Значение 80 дБ устраивает большинство радиолюбителей. Применение супердинамичного приемника имеет смысл только в TRX для очных соревнований и при условии, что все участники работают линейными сигналами. Проблемы с помехами от передатчика соседа чаще возникают не от низкого динамического диапазона приемника, а от того, что горе-радиолюбитель, пытаясь всех перекричать, настраивает свой передатчик по принципу - все стрелки вправо до упора.

По наблюдениям US5MIS, который не один год крутил ручки FT840, "Прибоя" и RA3AO, на слух вся эта техника звучит почти одинаково. Но когда были проведены сравнительные измерения по одинаковой методике, то TRX RA3AO реагировал на уровень 1 В по соседнему каналу, "Прибой" - на 0,8 В, а FT840 - на 0,5 В. Но удобство работы, стабильность и сервис взяли свое - оставлен FT840. Описываю все это не для того, чтобы показать какая хорошая у нас самодельная (или полусамодельная, как "Прибой")техника, а для того, чтобы стало ясно, что погоня за динамическим диапазоном имеет смысл до определенного уровня и под конкретные условия. Думаю, что многие счастливые обладатели супердинамичных RA3AO с удовольствием бы обменяли их на "хиленькие" по динамике FT840. Хочу коснуться еще одного стереотипа, распространенного среди наших радиолюбителей. Это убеждение, что синтезатор "шумит". После появления на свет ковельских синтезаторов ни один из моих трансиверов не был с ГПД, только и только синтезатор. Выше я описал чувствительность, достижимую со входа основной платы при использовании в качестве ГПД синтезаторов. О каком шуме может идти речь, когда ни с помощью Г4-102А, ни с Г4-158, ни с Г4-18 не удается измерить предельную чувствительность. Пришлось изготовить отдельный кварцевый генератор, запитать его от батареек, экранировать двойным экраном, и при помощи анттенюатора до 136 дБ оценить чувствительность платы.

Перейдем к описанию собственно основной платы, которая включает в себя:

  • отключаемый УВЧ, обратимый смеситель, пассивный диплексор, согласующий обратимый каскад на полевом транзисторе, основной кварцевый фильтр ;
  • линейку УПЧ, опорный генератор, детектор ;
  • УНЧ и узел АРУ .

Рассмотрим принципиальную схему подробно.

Усилитель высокой частоты (VT5) - с цепью отрицательной обратной связи Х-типа . Возможные параметры такого типа усилителей колеблются в пределах:

  • IР13 - +(21...46)дБм;
  • КРI - -7...+12дБм;
  • Кус - 2...12дБ;
  • Кш -2,2...4,ОдБ.

Проще говоря, УВЧ не перегружается на 40 м даже вечером, когда очень высок уровень помех. Предельная чувствительность такова, что позволяет слышать шум эфира на 28 МГц даже в сельской местности. Один из лучших транзисторов для такого усилителя - КТ939А. В плату был заложен КТ606А как более дешевый и распространенный. Не нужно сильно переживать, что УВЧ ухудшает динамический диапазон RX (снова я о "динамике", грешен, сам когда-то увлекался предельными цифрами). Во-первых, УВЧ - отключаемый, его можно всегда выключить. Во-вторых, включение его обычно требуется только на самых тихих диапазонах во время слабого прохождения, когда все станции слышны с небольшим уровнем, и вряд ли какая-либо из станций перегрузит этот каскад. Ну а в-третьих, "не так страшен черт, как его малюют". Практически во всех промышленных РПУ, например в Р399А, используются УВЧ, причем неотключаемые.

Настройка этого каскада зависит от потребностей пользователя. В зависимости от типа транзистора и его режима можно обеспечить или максимально возможную чувствительность, или минимальное воздействие этого каскада на верхнюю границу динамического диапазона.

О смесителе я писал в предыдущей статье , его схемотехника заимствована из . Основные преимущества этого варианта - обратимость и достаточно большой динамический диапазон (Dбл - до 140 дБ) при небольшом уровне гетеродина. Конечно, по количеству деталей он сложнее и дороже обычно применяемых смесителей. Но не нужно забывать, что этот узел определяет качество работы всего приемника, и экономия на нем бессмысленна.

От тщательности настройки смесителя зависит и то, как приемная часть будет воспринимать эфир, что можно будет там услышать, и то, сколько "мусора" будет выдано на передачу, насколько сложными придется делать полосовые фильтры, чтобы была возможность спокойно работать без Т VI. Часть делителя (D1) пришлось установить непосредственно у смесителя, дабы обеспечить противофазность сигналов на входе плеч VT1, VT2 и VT3, VT4. Это важнейшее требование со стороны гетеродина. Если у вас используется обычный гетеродин, противофазные сигналы нужно формировать другим способом. Здесь же использован вариант простейшей стыковки с ковельским синтезатором.

Применение триггера вызвано еще и тем, что на его выходе сигнал максимально приближен к меандру. При стыковке с обычным ГПД нужно использовать другие микросхемы ЭСЛ, например типов ЛМ, ТЛ и т.д. Главное требование - на входе транзисторных ключей должны быть одинаковые по уровню, но идеально противофазные высокочастотные сигналы. В ключах применены транзисторы КТ368 и КТ363, рекомендованные в . Экспериментов с другими транзисторами не проводилось. Смеситель работоспособен с различными типами диодов. Можно предположить, что наилучшими будут диоды Шотnки. Переход с КД922 на КД512, КД514 сколько-нибудь заметного ухудшения параметров не вызывает (при условии подбора диодов). По-моему, главное преимущество диодов КД922 перед всеми остальными заключается в том, что они поставляются подобранными и упакованными в индивидуальную тару (поэтому перемешивание исключается). С тщательно подобранными КД503 смеситель работает практически так же, как и с КД922.

Очень важна симметричность и качество изготовления трансформатора Т1. Входные сопротивления со входа Т1:
1,9МГц-7500м,
3,5МГц-5600м,
7 МГц-3000м,
10 МГц-4000м,
14МГц-3900м,
18МГц-3000м,
21МГц-1500м,
24МГц-1200м,
28МГц-1300м.

Это нужно учитывать при согласовании с ДПФ. Можно попробовать различные коэффициенты трансформации, для того чтобы входное сопротивление было ближе к 50 Ом, но оказалось проще изменять катушки связи на ДПФ под конкретное сопротивление основной платы. Для согласования с последующими каскадами применен обычный диплексор. На рис. 1 приведены данные диплексора для ПЧ=9 МГц. В принципе, можно этот узел и не устанавливать. Неплохое согласование можно получить за счет подбора режима VT15 КП903, однако применение диплексора позволяет получить максимально возможную чувствительность, и если и не избавиться полностью от пораженных точек, то значительно снизить их уровень. Активный двунаправленный каскад VT15 после смесителя должен иметь минимально возможный коэффициент шума, не ухудшать динамический диапазон смесителя и компенсировать затухание, вносимое смесителем, ДПФами и диплексором. Наиболее распространенный и качественный для этого каскада транзистор - КП903А. Можно применять КП307, КП303, КП302 (с максимальным значением крутизны), КП601. После VT15 сигнал через трансформатор ТЗ поступает на кварцевый фильтр ZQ1. Резистор R26 служит для согласования, он может и не потребоваться. Эту процедуру можно произвести и с помощью R22. В качестве ZQ1 применен лестничный шестикристальный кварцевый фильтр (рис.4). Для сужения полосы пропускания в режиме CW параллельно крайним резонаторам с помощью реле включаются дополнительные конденсаторы. Такой CW фильтр, конечно же, нельзя назвать качественным. Для любителей узкополосного CW требуется применение отдельного кварцевого фильтра.

Почему применен шестикристальный фильтр? Обычно практикуется восемь и даже десять пластин. Но не надо забывать, что этот фильтр используется и на передачу, а для приемлемого качества SSB требуется полоса около 3 кГц. Но для приема в условиях перегруженных любительских диапазонов достаточно полосы 2,2...2,4 кГц. Поэтому был выбран Компромисс: полоса пропускания по уровню -3 дБ - 2,3...2,4 кГц при меньшей прямоугольности. В итоге имеем вполне качественный прием и хороший сигнал на передачу (чего нельзя сказать о сигналах, которые сформированы при помощи восьмикристальных фильтров). Еще одно преимущество перед восьмикристальным фильтром - меньшее затухание в полосе прозрачности. Тем самым обеспечивается достижение предельной чувствительности всего тракта усиления.


Puc.4

Для увеличения затухания вне полосы прозрачности в тракте ПЧ применен подчисточный четырехкристальный фильтр (рис.5). Общее затухание обоих фильтров превышает 100дБ. На рис.4, 5 даны усредненные данные кварцевых лестничных фильтров из пластин в корпусе Б1, которые чаще всего встречаются. Подчисточный фильтр обрезает шумы, вносимые трактом УПЧ, и за счет примененной плавной регулировки полосы пропускания позволяет немного отстраиваться от помех в SSB режиме. Не следует, конечно, на такой вариант плавного изменения полосы пропускания возлагать большие надежды. Во-первых, сужение происходит только с одной стороны ската фильтра, а во-вторых, больше 40 дБ получить от четырехкристального ZQ проблематично. Но усложнение настолько просто и дешево, что отказываться от такого, хотя и небольшого, сервиса нет смысла. Подчисточный фильтр следует рассчитывать на полосу пропускания 2,4 кГц. При плавном сужении полосы варикапами верхний скат приближается к нижнему в зависимости от добротности кварцев до полосы 600...700 Гц. Но за счет невысокой прямоугольности фильтра даже при такой полосе пропускания возможен прием SSB станций. Этот режим часто используется в диапазонах 160, 80 и 40 м. Вместо указанных варикапов можно использовать по несколько включенных параллельно KB 119, KB 139.


Puc.5

Кварцевый фильтр ZQ1 согласуется с трактом УПЧ (рис.2) через резонансный контур L3 с катушкой связи. Если сопротивление фильтра заметно отличается от 300 Ом, требуется подбор числа витков катушки связи. Транзистор VT7 включается при работе на передачу. По второму затвору происходит регулировка выходной мощности трансивера.

Линейка УПЧ собрана на транзисторах КП327. Схемотехника заимствована у RA3AO. На мой взгляд, это один из лучших вариантов построения такого тракта. Здесь можно использовать двухзатворные полевые транзисторы и других типов. Наилучшими оказались BF980. Нашей промышленности не удалось скопировать характеристики этого транзистора, КП327 в сравнении с BF980 хуже и по Кш, и по Кус, хотя Кус транзисторов не имеет решающего значения.

Для VT8 нужно выбрать транзистор с минимальным шумом. Обычно лучшие экземляры попадаются среди КП327А. VT9, VT10, VT11 можно заменить и на КП350. Преимущество КП327 перед КП350 и КП306 - в лучшем значении Кш, устойчивости к статике, и "золотоискатели" на них никак не реагируют, т.к. транзисторы не содержат драгметаллов. Для регулировки усиления использовано свойство насыщения проходных характеристик полевых транзисторов по первому затвору при малом напряжении на втором . Излишнее усиление убирается путем шунтирования контуров ПЧ резисторами R38 и R46.

Не следует увеличивать ВЧ уровни по первым затворам транзисторов, чтобы мгновенное значение напряжения не превышало порог открывания стабилитронов защиты от статики (15 В). В противном случае стабилитроны открываются и блокируют работу АРУ - это касается двух последних каскадов УПЧ. Детектор и опорный генератор, предварительный УНЧ и АРУ - аналогичны .

Транзистор VT13 (рис.3) может использоваться для включения-выключения цепи АРУ и для блокировки АРУ во время передачи, чтобы не искажались показания S-метра, который в этом режиме"показывает выходную мощность передатчика. В качестве VT 13 можно использовать как полевой, так и биполярный транзистор. У биполярного транзистора сопротивление коллектор-эмиттер ниже, поэтому он лучше шунтирует цепь АРУ. Схема усилителя выпрямителя АРУ аналогична . Изменены временные характеристики "быстрой" цепочки, емкость С74 потребовалось увеличить до 0,047...0,1 мкФ.

В качестве оконечного УНЧ использована микросхема К174УН14, в типовом включении полоса пропускания сверху определяется цепочкой С69, R80; коэффициент усиления можно регулировать резистором R81. Выход УНЧ можно нагружать на динамик или через делитель R84, R85 на головные телефоны.

Детали

Катушки L1...L6 намотаны на каркасах диаметром 5 мм, с подстроечным сердечником СЦР-1. L3...L6 содержат по 25...30 витков провода ПЭВО,2. LCB - 3...4 витка у "холодного" конца L3. L9, L10 - дроссели с индуктивностью 50... 100 мкГн. L11 -дроссель 0...30 мкГн. Трансформаторы Т1...ТЗ намотаны проводом ПЭВО,16 на кольцах К 10х6х3 из феррита 1000 нн. Т1 содержит 10 витков скрутки в три провода, Т3 - 9 витков скрутки в два провода, Т2 намотан скруткой из трех проводов: обмотка I - 3 витка, II - 10 витков, III - 10 витков.

Поддавшись стремлению обеспечить "одноплатность" всей конструкции трансивера, решили на основной плате развести и опорный гетеродин. Это, конечно же, усложнило ситуацию с "пораженными точками". Некоторых из них можно было бы избежать совсем, если бы опорный гетеродин был выполнен в отдельном экранированном отсеке. При удачной ПЧ количество точек не превышает 3...5 на все девять диапазонов. Возможно от них избавиться практически совсем, если повозиться с дополнительными заземлениями шины питания микросхемы и металлизации вокруг этого узла.

Настройка платы - типовая, она неоднократно описана в радиолюбительской литературе.

Номиналы элементовR1 и С1 зависят от того, какой узел использован в качестве гетеродина. Если это ковельский синтезатор, R1=470...680м, C может иметь номинал от 68 пФ до 10 нФ. Качество согласования заметно на слух по минимальному количеству "шумовых точек" от синтезатора. Элементы LI, L2, С7, С9 настраивают в резонанс на частоту ПЧ. Резистор R19 может иметь номинал 50...200 Ом.

Качество согласования этого узла определяет общее уменьшение уровня "пораженок" и небольшое увеличение чувствительности. Согласования ZQ1 добиваются резисторами R22, R26, Кф и подбором количества витков LCB. Подчисточный фильтр ZQ2 согласуют резисторами R52 и. R54. Общее усиление тракта ПЧ можно подобрать при помощи R28, R38, R46. Резисторы R39, R47, R53, R60 влияют на Кус и определяют качество работы АРУ покаскадно. Об изготовлении трансформаторов. Были опробованы ферриты проницаемостью 400...2000, диаметр колец - 7...12 мм, скрутка проводов и без скрутки. Вывод - все работает. Главные требования - аккуратность изготовления, отсутствие замыкания обмотки на феррит и обязательная симметрия плеч.

Диоды в смесителе следует подобрать хотя бы по сопротивлению открытого перехода и емкости. Транзисторы VT1, VT2; VT3, VT4 необходимо подобрать как одинаковые комплементарные пары. В эмиттере VT5 номиналы R и С в цепочке не указаны. Они зависят от типа транзистора. Для КТ606 R - в пределах 68... 120 Ом, а С слеует настроить по максимуму усиления на 28 МГц (обычно 1нФ). С помощью R29 можно подобрать ток через транзистор, например по максимальной чувствительности. Транзисторы КП327 припаиваются снизу платы. Сверху платы, со стороны установки деталей, оставлена фольга, отверстия раззенкованы. Катушки закрыты экранами.

По вопросам приобретения печатных плат или настроенных узлов можно обращаться к автору, частота - 3,700 после 23.00 MSK.

Литература:

  1. Радиолюбитель. - 1995. NN11,12.
  2. Радиолюбитель. - 1996. - NN3...5.
  3. Кухарук. Синтезатор частоты// Радиолюбитель. - 1994. -Nl.
  4. Дроздов. Любительские KB трансиверы. - М.: Радио и связь, 1988.
  5. Першин. Трансивер "Урал-84". "30 и 31 выставки радиолюбителей".
  6. Богданович. Радиоприемные устройства с большим динамическим диапазоном. - М.: Радио и связь, 1984.
  7. Мясников. Одноплатный универсальный тракт /Радио. - 1990. - N8.
  8. Тарасов. Узлы KB трансивера// Радиолюбитель.-1995.-NN11,12.
  9. Ред Э. Справочное пособие па высокочастотной схемотехнике. Изд. Мир, 1990.

Принципиальная схема не сложного самодельного трансивера КВ диапазона из широкодоступных деталей.

Схема основного блока

Рис. 1. Принципиальная схема основного блока трансивера РОСА.

Имея в своем распоряжении готовый синтезатор частоты, решил его куда нибудь пристроить, выбор пал на данную схему.

Замечания и исправления

При сборке сразу же обнаружились множественные ошибки на рисунке монтажа деталей сверху. На обозначения на этом рисунке можно не ориентироваться, чтобы не путаться.

Рис. 2. Печатная плата основного блока (вид со стороны деталей).

Монтажная плата со стороны дорожек выполнена почти без ошибок. Обратите внимание: разводка
под транзистор КП903 - неправильная, его нужно развернуть на 360 градусов.

Рис. 3. Печатная плата основного блока трансивера РОСА.

При сборке смотрел на схему, потом на плату и вставлял нужную деталь,так не ошибешься. Простота схемы позволяет без особых заморочек набить плату за день, не спеша.

Если будете использовать электретный микрофон,то из микрофонного усилителя нужно исключить компоненты
С33, С29, C25. Все остальное по схеме - без замечаний.

Детали трансивера

Теперь несколько слов о деталях. В качестве дросселей L2-L5 использовал фабричные серии ДПМ. Первоначально, в первом давно собранном таком же трансивере, в качестве дросселей использовал
ферритовые кольца со следующими размерами:

  • внешний диаметр 7мм,
  • внутренний 4мм,
  • высота 2мм.

На эти ферритовые кольца наматывал 30 витков проводом 0,2мм, лучше всего в шелковой изоляции,
но у меня обычным ПЭВ намотано.

Трансформаторы (кроме Т5) намотаны на кольцах тех же размеров, скрученными вместе тремя и двумя проводами - 12 витков проводом 0,12мм.

В качестве Т5 использовал контур от китайского радиоприемника. Желательно найти контур размерами побольше. Обмотки имеют 12 и 4 витка проводом 0,12мм.

Схема усилителя мощности

Схема оконечного усилителя составлена из двух, не помню каких, схем. Фотография готового усилителя показана на фото.

Рис. 4. Принципиальная схема усилителя мощности для трансивера. (Оригинал фото автора - 200КБ).

Начальный ток покоя оконечных транзисторов устанавливаем в 160ма. Если все собрано правильно то работает сразу без дополнительной наладки.

Рис. 5. Фото готовой платы усилителя мощности (В большом размере - 300КБ).

Ферритовые кольца брал от компьютерного блока питания. К сожалению, нужных размеров ферритовых не нашлось - пришлось использовать эти. Как оказалось с ними тоже работает усилитель вполне удовлетворительно.

Цвет колец - желтый. Грубые измерения мощности этого ШПУ показали:

  • около 20 Ватт на диапазонах 80, 40 метров;
  • около 10 Ватт на 20-ти метровом.

Ничего не поделать, завал АЧХ из-за колец. На другие диапазоны не проверял. Выходной трансформатор Т4 намотан проводом 0,7мм, в количестве 12-ти витков. Трансформатор Т3 - тоже самое, а вот Т1 намотан на кольце 7х4х2 - 12 витков скрученным вместе проводом 0,2мм.

Полосовые фильтры

Полосовые фильтры взяты от трансивера дружба, смотреть фото.

Рис. 6. Полосовые фильтры трансивера.

В качестве телеграфного опорника использовал схемку из трансивера Мясникова - "одноплатный универсальный тракт".

Рис. 7. Принципиальная схема полосовых фильтров.

Синтезатор частоты

Также прикладываю схему синтезатора частоты. Прошивки на него не имею, поскольку достался уже готовый.

Рис. 8. Схема синтезатора частоты (увеличенный рисунок - 160КБ).

Трансивер в сборе

Ну и на остальных фото - то что получилось и как собиралось. Чтобы посмотреть фото в полном размере - кликните по нему.

Рис. 9. Конструкция трансивера в корпусе от DVD (фото 1).

Рис. 10. Конструкция трансивера в корпусе от DVD (фото 2).

Рис. 11. Конструкция трансивера в корпусе от DVD (фото 3).

Рис. 12. Фото готового трансивера в сборе.

Еще два слова по самому трансиверу: не смотря на свою простоту, он имеет очень даже неплохие параметры, на мой взгляд. Работать на нем комфортно.

По всем остальным вопросам пишите на почту dimka.kyznecovrambler.ru

Самодельный SSB-трансивер на диапазон 40 метров

Ранее мы изучили конструкцию простого супергетеродинного приемника с одной ПЧ на диапазон 40 метров. Данный приемник был доработан до SSB-трансивера с выходной мощностью 5 Вт. Рассмотрим его устройство.

Примечание: Для повторения проекта не требуется какое-либо сложное оборудование. Вполне достаточно мультиметра и RTL-SDR v3. Если у вас еще нет радиолюбительской лицензии, это не страшно. Вы можете совершенно легально передавать все что захотите в эквивалент нагрузки. Сигнал можно будет принять на расположенный рядом RTL-SDR с проводом длиной 20 см в качестве антенны.

Начнем с внешнего вида трансивера:

Все компоненты были размещены в самодельном корпусе из листового алюминия размером 21x21x7 см. Надписи нанесены при помощи маркиратора Brady. Тангента тоже самодельная:

Она сделана из кнопки, электретного микрофона и разъема 3.5 мм, помещенных в пластиковый корпус Gainta G431. Последний неплохо сидит в руке.

Корпус трансивера был сделан довольно большим по следующим соображениям. Во-первых, мне не хотелось испытывать недостатка в месте. Делать миниатюрные трансиверы тоже интересно. Но я бы предпочел заняться таким в качестве отдельного проекта, и тогда уж сразу использовать SMD-компоненты. Во-вторых, продумать новый корпус для трансивера, нарезать и согнуть алюминий, просверлить отверстия, пройти все напильником и установить элементы управления — серьезная задача на несколько дней, плюс затраты на материалы. С целью экономии времени и денег было решено сделать относительно универсальный корпус, который может быть переиспользован в будущих проектах. Четыре кнопки и разъем для телеграфного ключа, которые можно видеть на фото, в данном проекте не используются.

Экранчик на ST7735, что изначально использовался в приемнике, был заменен на ЖК-индикатор 1602 с интерфейсом I2C. Экранчики 1602 большие, легко читаются и стоят недорого. Также было установлено, что ST7735 создает наводки на некоторых частотах в диапазоне 40 метров.

Микроконтроллер был заменен на STM32F030:

Отладочная плата как на фото чуть компактнее, чем плата Blue Pill, использованная изначально. Это позволяет более плотно разместить компоненты внутри корпуса. Также данная плата дешевле. Рядом находится плата с Si5351. Она такая же, как была в приемнике, тут ничего не поменялась. Над платами можно видеть регулятор напряжения LM7805 с небольшим радиатором. Экранчикам 1602 для работы нужны 5 В, поэтому без регулятора не обойтись. Также этот регулятор позволяет уменьшить падение напряжения на регуляторах 3.3 В, которые находятся на платах с микроконтроллером и генератором частот.

Все компоненты трансивера были размещены на плате 20x20 см:

Платы едва хватило. Я рад, что решил использовать корпус побольше. На фото можно видеть, что в трансивере нет каких-либо экранирующих перегородок. В них не возникло необходимости.

Рассмотрим структурную схему трансивера:

Блок, обозначенный как «common part», является общим для приемника и передатчика. Вот этот блок на структурной схеме приемника из предыдущей статьи:

На прием все работает, как работало раньше. Единственное отличие заключается в кварцевом фильтре, который был заменен на более узкополосный QER-фильтр. ПЧ осталась прежней, 12 МГц.

При нажатии PTT происходит следующее. Во-первых, все реле на схеме переключаются из положения RX в положение TX. Во-вторых, питание подается на три ступени ВЧ-усилителя, а также на усилитель сигнала с микрофона. Последний представляет собой обычный неинвертирующий усилитель на LM741. УНЧ на LM386 при этом обесточивается. И в-третьих, генератор плавного диапазона (VFO) и опорный генератор (BFO) меняются местами. Теперь на первый смеситель в «common part» идет BFO, а на второй — VFO.

Усиленный сигнал с микрофона переносится первым смесителем на ПЧ, проходит через буфер и фильтруется кварцевым фильтром. В итоге мы получаем SSB. Ранее в статье о диодном кольцевом смесителе говорилось, что для получения SSB нужно НЧ сигнал подавать на порт IF, а порт RF использовать как выход. Но здесь мы делаем наоборот. На самом деле, работает и так и так. Разница в том, что использованный здесь вариант дает сигнал с уровнем на ~25 dB ниже.

При данном подходе необходим микрофонный усилитель. Если делать, как в статье про смесители, то вместо усилителя нужен буфер и аттенюатор. Был опробован как первый вариант, так и второй. Оба работают, оба позволяют проводить радиосвязи. В качестве окончательной была выбрана схема с подачей НЧ сигнала на порт RF, потому что она чуть проще.

Далее сигнал усиливается и переносится вторым смесителем на 7 МГц. Здесь мы покидаем «common part» и идем на «buffer / amplifier». В трансивере используется выходной каскад из статьи Усилитель для QRP трансивера: работа над ошибками. «Buffer / amplifier» представляет собой первую ступень каскада, только перед ним был добавлен аттенюатор на 6 dB.

Таким образом, первая ступень превращается в буфер для второго смесителя, как ранее было описано в статье про усилители с обратной связью. Только аттенюатор здесь стоит на входе усилителя, а не на выходе. Если мы поставим аттенюатор на выходе, то при работе на прием часть сигнала с BPF начнет идти в аттенюатор. Нам понадобится дополнительное реле, чтобы избежать этого. Сейчас при работе на прием сигнал с BPF видит высокий импеданс на выходе обесточенного усилителя, и потому не идет в него.

С буфера сигнал проходит через BPF. Это необходимо, потому что выход диодного кольцевого смесителя помимо желаемого сигнала также имеет побочные продукты. Если попытаться отфильтровать их потом, произойдет следующее. Выходной каскад будет усиливать сигналы, которые нам не нужны. Это приведет к падению КПД выходного каскада и росту интермодуляционных искажений. Кроме того, нежелательные сигналы потом будет крайне трудно отфильтровать. Как результат, мы создадим помехи как на радиолюбительских диапазонах, так и за их пределами.

Fun fact! В многодиапазонных SSB-трансиверах для того, чтобы не делать два набора фильтров для каждого диапазона, используются две ПЧ. Вторая ПЧ берется большой, например, 45 МГц, и BPF делается в одном экземпляре на эту частоту. На этапе, который мы сейчас рассматриваем, сигнал переносится на вторую ПЧ, фильтруется, а затем переносится обратно на 1.8-30 МГц. За счет использования высокой второй ПЧ нежелательные продукты последнего переноса могут быть отфильтрованы простым ФНЧ.

Далее отфильтрованный сигнал проходит еще через две ступени выходного каскада и фильтр нижних частот, после чего идет на антенну. Вместо ФНЧ можно было бы использовать еще один полосно-пропускающий фильтр. Но в данном случае ФНЧ хорошо подавляет нелинейные искажения выходного каскада. При этом он имеет меньшие вносимые потери, чем полосовой фильтр.

Побочные продукты в выходном сигнале удалось подавить на 40+ dB:

А так выглядит SSB-сигнал, принятый на RTL-SDR:

Здесь видна одна проблема, которую я не смог решить. Если молчать в микрофон, то в эфир идет несущая с уровнем 27 dBm (0.5 Вт). На анализаторе спектра видно, что уровень несущей падает, если говорить в микрофон. Это можно разглядеть и на водопаде. Я счел данную проблему некритичной.

Было проведено несколько тестовых радиосвязей. Корреспонденты дают неплохие рапорты, а также отмечают качество и разборчивость сигнала. Не могу не отметить, что работать в QRP на самодельный трансивер намного веселее, чем на покупной. Людям интересно, как устроен трансивер, а что за микрофон, а что за антенна, а как она повернута, и так далее. Сразу разговор завязывается, не просто 59-59, 73-73.

Как мне кажется, для первого SSB-трансивера получилось неплохо. Схему вы можете скачать здесь [PDF], а прошивку для МК — здесь. На схеме и в коде прошивки есть дополнительные комментарии. А на этом у меня все. Как обычно, буду рад вашим вопросам и дополнениям.

Дополнение: Возможная доработка описана в посте Усилитель 10 Вт на транзисторах IRF510. Также вас может заинтересовать статья AYN: телеграфный QRP трансивер на 20/40 метров

Метки: STM32, Беспроводная связь, Любительское радио, Электроника.

Ламповый трансивер сделать самому своими руками

Ламповый трансивер – это устройство, которые предназначено для передачи сигналов определенной частоты. Как правило, он используется в качестве приемника. Основным элементом трансивера принято считать трансформатор, который соединяется с катушкой индуктивности. Особенность ламповых модификаций заключается в стабильности передачи низкочастотного сигнала.

Дополнительно они отличаются наличием мощных конденсаторов и резисторов. Контроллеры в устройстве устанавливаются самые разнообразные. Для устранения различных помех в системе применяются электромеханические фильтры. На сегодняшний день многие заинтересованы в установке маломощных трансиверов на 50 Вт.

Трансиверы короткой волны (КВ)

Чтобы сделать трансивер КВ своими руками, необходимо использовать трансформатор малой мощности. Дополнительно следует позаботиться об усилителях. Как правило, в этом случае проходимость сигнала значительно увеличится. Чтобы была возможность бороться с помехами, в устройстве устанавливают стабилитроны. Используются чаще всего трансиверы данного типа в телефонных станциях. Некоторые делают КВ трансивер своими руками (ламповый), используя катушку индуктивности, которая должна выдерживать сопротивление максимум 9 Ом. Проверяется прибор всегда по первой фазе. В данном случае контакты необходимо выставить в верхнее положение.

Антенна и блок для трансивера КВ

Антенна для трансивера своими руками делается с применением различных проводников. Дополнительно требуется пара диодов. Пропускная способность антенны проверяется на маломощном передатчике. Еще для устройства требуется такой элемент, как геркон. Он необходим для передачи сигнала на внешнюю обмотку катушки индуктивности.

Для того чтобы сделать блок питания трансивера своими руками, необходим высокочастотный генератор, который работает на пару со смесителем. Дополнительно специалистами используются конденсаторы различной емкости. Максимальное напряжение прибор должен выдерживать на уровне 50 В. Предельная частота в данном случае не превышает 60 Гц. Для решения проблем с электромагнитными помехами применяются специальные контуры. В устройстве они предназначены также для удвоения напряжения.

Устройства ультракороткой волны (УКВ)

Сделать УКВ-трансивер своими руками довольно сложно. В данном случае проблема заключается в поиске нужной катушки индуктивности. Работать она обязана на ферритовых кольцах. Конденсаторы лучше всего использовать различной емкости. Для смены фазы применяются только контроллеры. Использование многоканальной модификации для трансиверов не целесообразно. Дроссели в системе необходимы с высокой частотой, а для увеличения точности устройства применяются стабилитроны. Устанавливаются они в трансиверах только за трансформатором. Чтобы транзисторы не перегорали, некоторые специалисты советуют припаивать электромеханические фильтры.

Модели трансиверов длинной волны (ДВ)

Сделать длинноволновые ламповые трансиверы своими руками можно только с участием мощных трансформаторов. Контроллер в этом случае должен быть рассчитан на шесть каналов. Смена фазы приемника осуществляется через модулятор, который работает на частоте 50 Гц. Чтобы минимизировать помехи на линии, фильтры используются самые разнообразные. Повысить проводимость сигнала у некоторых получается за счет использования усилителей. Однако в такой ситуации следует позаботиться о наличии емкостных конденсаторов. Транзисторы в системе важно устанавливать за трансформатором. Все это позволит повысить точность устройства.

Особенности устройств средней волны (СВ)

Сделать средневолновые ламповые трансиверы своими руками самостоятельно довольно сложно. Работают указанные приборы на светодиодных индикаторах. Лампочки в системе устанавливаются попарно. Катоды в данном случае важно закреплять непосредственно через конденсаторы. Решить проблему с повышением полярности можно за счет применения дополнительной пары резисторов на выходе.

Для замыкания цепи используется реле. Антенна к микросхеме всегда крепится через катод, а мощность устройства определяется через напряжение в трансформаторе. Встретить чаще всего трансиверы данного типа можно на самолетах. Там управление осуществляется через панель или дистанционно.

Антенна и блок для трансивера СВ

Сделать антенну для трансивера данного типа можно, используя обычную катушку. Внешняя обмотка ее должна соединяться с усилителем на выходе. Проводники в данном случае необходимо припаивать к диоду. Приобрести его в магазине не составит особого труда.

Чтобы сделать блок для трансивера данного типа, используется реле, а также генератор на 50 В. Транзисторы в системе применяются только полевые. Дроссель в системе необходим для соединения с контуром. Проходные конденсаторы в блоках данного типа используются очень редко.

Модификация трансивера УКВ-1

Сделать данный трансивер своими руками на лампах можно с применением трансформатора на 60 В. Светодиоды в схеме задействуются с целью распознавания фазы. Модуляторы в устройстве устанавливаются самые разнообразные. Высокое напряжение трансивером выдерживается за счет мощного усилителя. В конечном счете сопротивление трансивером обязано восприниматься до 80 Ом.

Чтобы устройство успешно прошло калибровку, важно очень точно настроить положение всех транзисторов. Как правило, замыкающие элементы ставятся в верхнее положение. В данном случае тепловые потери будут минимальными. В последнюю очередь накручивается катушка. Диоды на ключах в системе проверяются перед включением обязательно. Если соединение их будет плохим, то рабочая температура резко может повыситься от 40 до 80 градусов.

Как сделать трансивер УКВ-2?

Чтобы правильно сложить трансивер своими руками, трансформатор необходимо взять на 60 В. Предельную нагрузку он обязан выдерживать на уровне 5 А. Для повышения чувствительности устройства используются только качественные резисторы. Емкость одного конденсатора обязана равняться как минимум 5 пФ. Калибруется устройство в конечном счете через первую фазу. При этом замыкающий механизм сначала выставляется в верхнее положение.

Включать блок питания необходимо, наблюдая за системой индикации. Если предельная частота будет превышать 60 Гц, значит, происходит снижение номинального напряжения. Проводимость сигнала в данном случае можно повысить за счет электромагнитного усилителя. Устанавливается он, как правило, рядом с трансформатором.

Модели КВ с медленной разверткой

Сложить трансивер КВ своими руками не представляет никакой сложности. В первую очередь следует подобрать необходимый трансформатор. Как правило, используются импортные модификации, которые способны выдерживать максимальную нагрузку до 4 А. В этом случае конденсаторы подбираются, исходя из показателя чувствительности устройства. Полевые транзисторы в трансиверах встречаются довольно часто. Однако они не лишены недостатков. Главным образом они связаны с большой погрешностью на выходе.

Происходит это из-за повышения рабочей температуры на внешней обмотке. Чтобы решить эту проблему, транзисторы можно использовать с маркировкой ЛМ4. Показатель проводимости у них довольно хороший. Модуляторы для трансиверов данного типа подходят только на две частоты. Соединение ламп происходит стандартно через дроссель. Чтобы добиться быстрой смены фазы, усилители в системе необходимы только в начале цепи. Для улучшения производительности приемника, антенна подсоединяется через катод.

Многоканальная модификация трансивера

Сделать многоканальный трансивер своими руками можно только при участии высоковольтного трансформатора. Предельную нагрузку он обязан выдерживать до 9 А. В этом случае конденсаторы используются только с емкостью свыше 8 пФ. Повысить чувствительность устройства до 80 кВ практически невозможно, это следует учитывать. Модуляторы в системе применяются на пять каналов. Для смены фазы используются микросхемы класса ППР.

Трансивер СДР прямого преобразования

Чтобы сложить СДР трансивер своими руками, важно использовать конденсаторы с емкостью свыше 6 пФ. Во многом это связано с высокой чувствительностью устройства. Дополнительно указанные конденсаторы помогут при отрицательной полярности в системе.

Для хорошей проводимости сигнала требуются трансформаторы как минимум на 40 В. При этом нагрузку они должны выдерживать около 6 В. Микросхемы, как правило, рассчитаны на четыре фазы. Проверка трансивера начинается сразу с предельной частоты в 4 Гц. Чтобы справляться с электромагнитными помехами, резисторы в устройстве используются полевого типа. Двухсторонние фильтры в трансиверах встречаются довольно редко. Максимальное напряжение на второй фазе передатчик обязан выдерживать на уровне 30 В.

Для повышения чувствительности устройства применяются переменные усилители. Работают они в трансиверах на пару с резисторами. Для преодоления низкочастотных колебаний задействуются стабилизаторы. В цепи анода лампы устанавливаются последовательно через дроссель. В конечном счете в устройстве проверяется замыкающий механизм и система индикации. Делается это по каждой фазе отдельно.

Модели трансиверов с лампами Л2

Собирается простой трансивер своими руками с применением трансформатора на 65 В. Модели с указанными лампами отличаются тем, что проработать способны много лет. Параметр рабочей температуры у них в среднем колеблется в районе 40 градусов. Дополнительно следует учитывать, что соединяться с однофазными микросхемами они не способны. Модулятор в данном случае лучше устанавливать на три канала. Благодаря этому показатель рассеивания будет минимальным.

Дополнительно можно избавиться от проблем с отрицательной полярностью. Конденсаторы для таких трансиверов применяются самые разнообразные. Однако в данной ситуации многое зависит от предельной мощности блока питания. Если рабочий ток на первой фазе превышает 3 А, то минимальный объем конденсатора должен составлять 9 пФ. В результате можно будет рассчитывать на стабильную работу передатчика.

Трансиверы на резисторах МС2

Для того чтобы правильно сложить трансивер своими руками с такими резисторами, важно подобрать хороший стабилизатор. Устанавливается он в устройстве рядом с трансформатором. Резисторы данного типа способны выдерживать максимальную нагрузку около 6 А.

По сравнению с другими трансиверами это довольно много. Однако расплатой за это является повышенная чувствительность устройства. Как следствие, модель способна давать сбои при резком повышении напряжения на трансформатор. Чтобы минимизировать тепловые потери, в устройстве задействуется целая система фильтров. Располагаться они должны перед трансформатором, чтобы сопротивление в конечном счете не превышало 6 Ом. В таком случае показатель рассеивания будет незначительным.

Устройство однополосной модуляции

Собирается трансивер своими руками (схема показана ниже) из трансформатора на 45 В. Модели данного типа чаще всего можно встретить на телефонных станциях. Однополосные модуляторы по своей структуре являются довольно простыми. Переключение по фазе в данном случае осуществляется напрямую через смену положения резистора.

Предельное сопротивление при этом резко не снижается. В результате чувствительность прибора всегда остается в норме. Трансформаторы для таких модуляторов подходят с мощностью не более 50 В. Использовать полевые конденсаторы в системе специалистами не рекомендуется. Гораздо лучше, с точки зрения экспертов, воспользоваться обычными аналогами. Калибровка трансивера осуществляется только на последней фазе.

Модель трансиверов на усилителе РР20

Сделать трансивер своими руками на усилителе данного типа можно с использованием полевых транзисторов. Сигналы передатчик в этом случае будет передавать только коротковолновые. Антенна у таких трансиверов подсоединяется всегда через дроссель. Предельное напряжение трансформаторы обязаны выдерживать на уровне 55 В. Для хорошей стабилизации тока применяются низкочастотные катушки индуктивности. Для работы с модуляторами они подходят идеально.

Микросхему для трансивера лучше всего подбирать на три фазы. С вышеуказанным усилителем он эксплуатируется хорошо. Проблемы с чувствительностью у аппарата возникают довольно редко. Недостатком данных трансиверов можно смело назвать низкий коэффициент рассеивания.

Трансиверы с антеннами несимметричного питания

Трансиверы данного типа на сегодняшний день встречаются довольно редко. Связано это в большей степени с низкой частотой выходного сигнала. В результате отрицательное сопротивление у них порой достигает 6 Ом. В свою очередь предельная нагрузка на резистор оказывается в районе 4 А.

Чтобы решить проблему с отрицательной полярностью, применяются специальные переключатели. Таким образом, смена фазы происходит очень быстро. Настроить эти приборы можно даже на дистанционное управление. Вышеуказанная антенна на реле устанавливается с маркировкой К9. Дополнительно в трансивере должна быть хорошо продумана система индуктивности.

В некоторых случаях устройство выпускается с дисплеем. Высокочастотные контуры в трансиверах также являются не редкостью. Проблемы с колебаниями в цепи решаются за счет стабилизатора. Устанавливается он в устройстве всегда над трансформатором. Находиться они друг от друга при этом обязаны на безопасном расстоянии. Рабочая температура прибора должна быть в районе 45 градусов.

В противном случае неизбежен перегрев конденсаторов. В конечном счете это приведет к неминуемой их порче. Учитывая все вышесказанное, корпус для трансивера должен хорошо вентилироваться воздухом. Лампы к микросхеме стандартно крепятся через дроссель. В свою очередь реле модулятора должно соединяться с внешней обмоткой.

Схемы радиостанций и трансиверов, усилители и трансвертеры (Страница 4)


Детекторный трансивер на туннельном диоде с земляной батареей

Простой самодельный трансивер(приемо-передатчик) на тунельном диоде, который питается от самодельного гальванического элемента. Трансивер содержит минимум деталей и является экспериментальным устройством. В схеме может быть использован туннельный диод серии АИ201. Катушка L1 содержит 10 витков ...

2 4138 2

Конвертер для приема цифровых видов связи

Многие радиолюбители интересуются цифровыми видами радиосвязи, но не знают с чего начать. В последнее время доступность персональных компьютеров стала причиной революции также в любительской радиосвязи. Достаточно прослушать любительские диапазоны КВ или УКВ, чтобы на определенных частотах ...

0 4010 0

Трансвертер Magic band 50/29 МГц - схема и описание

Трансвертер - это приставка к трансиверу, которая переносит принимаемые и передаваемые им сигналы в новую полосу частот. Схема трансвертера «Magic band 50/29МГц» показана на рис. 1. Рис. 1. Принципиальная схема трансвертера Magic band 50/29МГц. Работа схемы трансвертера в режиме ...

0 3572 0

Антенный тюнер-коммутатор, назначение и принципиальная схема

Современные антенные тюнеры хорошо зарекомендовали себя в работе с однопроводными, двухпроводными и коаксиальными линиями передачи. Данное устройство представляет собой антенный тюнер и коммутатор на пять антенн (АТК). В рассматриваемом исполнении устройство выглядит следующим образом...

0 4451 0

Советы и доработки для QRP трансивера Микро-80

Я до сих пор получаю много писем с вопросами относительно «Микро-80» и постараюсь здесь осветить некоторые из них. Впервые схема «Микро-80» была опубликована в журнале “SPRAT” G-QRP Клуба больше, чем 10 лет назад, и неоднократно перепечатывалась в различных ...

0 2501 0

Простые ЧМ и АМ приемники для радиостанций

Рассмотрены схемы простых радиоприемников для использования в составе приемо-передающих радиостанций в диапазонах КВ и УКВ. Радиоприемники, как известно, рассчитаны на работу в разных частотных диапазонах: ДВ, СВ, КВ, УКВ. По способу модуляции радиоприемники делятся на АМ- и ...

2 6352 0

Самодельная АМ радиостанция на 27МГц, дальность 1-2км (уоки-токи, walkie-talkie)

Представлена принципиальная схема простой АМ радиостанций уоки-токи (Walkie-Talkie) для радиосвязи на небольшие расстояния в КВ диапазоне частот 27МГц. Самодельная радиостанция построена на транзисторах и микросхемах и не сложны в налажвании, отличный выбор для начинающих радиолюбителей чтобы ...

1 5364 0

Радиостанция для связи через радиолюбительские спутники (29МГц, 145МГц)

Эта радиостанция позволяет проводить связь через ИСЗ типа «Радио». Приемник радиостанции представляет собой супергетеродин с одним преобразованием частоты. Сигнал с приемной антенны поступает на двухкаскадный усилитель радиочастоты через фильтр-пробку 1L1 1С1, предотвращающую...

0 4456 0

Транзисторно-ламповый трансивер на 28 МГц (10м)

Схема самодельного трансивера на 28 МГц, он предназначен для работы телеграфом и SSB (верхняя боковая полоса) в любительском диапазоне 10 м. Трансивер выполнен по схеме с одним преобразованием частоты. В нем применен самодельный шестикристальный кварцевый фильтр на частоту 6,236 МГц. Тракты приема и передачи трансивера...

0 5190 0

Транзисторный трансивер на диапазон 160м

Принципиальная схема трансивера изображена на рисунке ниже. Трансивер содержит четыре блока, которые собирают на отдельных платах. При передаче в режиме CW через контакты переключателя S5.1 подается питание на генератор частоты 501 кГц, собранный на транзисторе 3V1. При нажатии на телеграфный ключ...

1 5068 0

 1  2  3 4 5  6  7  8  ... 14 

Радиодетали, электронные блоки и игрушки из китая:

Archive - RECEIVER.BY

a quick search in the archives of amateur publications


Recent searches

ионн [160], Урал РМ-101 [1], Принципиальная схема радиостанции ICOM IC-T2H [1], AIWA CT-R 429M [1], аккумулятор [170], приемник [509], УРАЛ [40], philips 150 [1], CURTIS [15], panaso [726], видео [117], ЛДС [20], автомобильный [126], Ремонт [77], Aiwa c [62], icom [77], преобразователь  [201], сапфир [15], SUPER  [88], Маяк [41], ka2107 [1], Прибор комбинированный Ц4314 [2], panasonic nv [21], panasonic kx [54], Антенный [85], Анализатор [26], микро [713], HITACHI CMT2139. Принципиальная схема [1], Барк-001стерео [2], TOSHIBA 285 D8D. Принципиальная схема [1], л2-42 [1], электрон-10 [1], приемник сигналов РБУ 66 кГц [1], Yaesu FT-920. Раскрытие на передач [1], Yaesu FT-101B документация [1], Onwa [15], Эстония [25], 27mh [1], Radiotehnika [8], 144 мгц [70], Tait T2000 программатор [1], Grundig st [102], WM31PM плата АОН WHITE MEGA 31 МЭЛТ [1], ключ [528], grundig tvr [16], antenna [136], alinco [89], albrecht [29], alan 48 [5], alan [45], aiwa [219], Yaesu FT-101 [3], Yaesu [74], Wi Fi антенна своими руками [1], Vestel [5], VEF TA-D - Телефон (СССР) 14Kb [2], VEF 221 схема [1], VEF [32], Unitra G-602 - схема и инструкция [1], Uniden SMh2525DT программатор [1], Tehna Tronik. Руководство пользователя (аналог Panasonic KX-T2365). [1], Tecsun PL-600 инструкция [1], Technics SU-V620 Усилитель мощности. Схема. 621Kb. [1], Technics SU-V620 Усилитель мощности. [1], Technics RS-TR474. Кассетный магнитофон. Схема. 409Kb. [1], Technics RS-TR474. Кассетный магнитофон. Схема. 409Kb [1], Tait PGM2020 программатор [1], TV power supply schematics SUPRA STV-2054 (Шасси: C-41) [2], TV power supply schematics PANASONIC TX-21S1TSS (Шасси: Z-5) [1], TV Power Supply Sony KV-V2155K (Шасси: BE-2A) [2], TS-440S - описание пользователя [1], TS-440S [3], THOMSON 21DG130 схема [1], Sony KV-14LT1В/Е/K/U, KV14LM1В/E/К/U, KV-21LT1B/E/K/U, KV-21FT2K schematics [2], Sony KV-14LT1В/Е/K/U [2], Sony XR [37], Samsung 500b_2 2-часть (669764 Б) [1], Samsung 330, 331, 530, 531, TFT (936198 Б) [1], Samsung описание от SKP308h3(АТС). [1], Samsung [369], SSB приемник на ИМС TDA 1083  [1], SSB ПРИЕМНИК [1], SIEMENS A50 LG Overview(Языковая таблица), ZIP(pdf) [1], SIEMENS [76], SANYO CEM-2511 VSU-00. Принципиальная схема [1], Nokia charger (original) Зарядное устройство. [2], Nokia - описание шасси Stereo Plus (Normal & Multinorm) [1], Nokia - описание шасси FP [1], Nokia 8850 [3], Mongoose TT. Схема подключения. [1], MixW 2.11 Free - программа для цифровой радиосвязи [1], Meritec 2 . Схема подключения. [1], Marantz - model 8 Ламповый усилитель. Схема. 63Kb. [1], Magic Systems MS-300 (Схема подключения- автосигнализация) [2], MOTOROLA MicroTac (Схема) [1], LM901 цифровой вольтметр [1], LASER LINE- Автосигнализация [1], L-305 (Lcard) - "Виртуальный прибор" - измеритель АЧХ. [2], Kenwood XD - 8501 (6000, 8000, 9000 серии) Минисистема. Схема. 315Kb. [1], Kenwood TS-950SDX. Руководство [1]

Схема простого коротковолнового трансивера » Паятель.Ру


Трансивер предназначен для работы телефоном в восьми диапазонах: трех участках диапазона 28 Мгц (29 Мгц, 28,5 Мгц и 28 Мгц), и диапазонах 21 Мгц, 14 Мгц, 7 Мгц, 3,5 Мгц, 1,8 Мгц. Во всех диапазонах чувствительность в режиме приема не хуже 1 мкВ/м при отношении сигнал/шум 3:1. Избирательность по соседнему каналу не хуже 50 дб, и главным образом определяется параметрами кварцевого фильтра. Динамический диапазон по забитию не менее 70 дб. Ширина полосы пропускания 2,4 кГц с возможностью сужения до 0,8 кГц.


Регулировка АРУ обеспечивает изменение выходного сигнала не более чем на 6 дб при изменении входного на 60 дб.. Номинальная выходная мощность УЗЧ — 250 мВт. Несущая и боковая нерабочая частоты подавляются не хуже чем на 50 дб. Трансивер работает совместно с всеволновым усилителем мощности.

Принципиальная схема тракта ПЧ трансивера показана на рисунке 1. Схема с одним преобразованием частоты, с промежуточной частотой 9050 кГц. Тракт ПЧ содержит два кольцевых диодных смесителя, первый на диодах VD1-VD4 и ВЧ трансформаторах Т1 и Т2 работает как преобразователь частоты при приеме, и как балансный смеситель при передаче. А второй на VD5-VD8 и ВЧ трансформаторах Т3 и Т4 выполняет роль демодулятора при приеме, и смесителя при передаче.

Сигнал ПЧ выделяется в первичной обмотке трансформатора Т2 и поступает на двухкаскадный УПЧ на транзисторах VT1-VT4, каскады которого выполнены по каскадной схеме на полевом и биполярном транзисторах. Такой каскад обеспечивает значительно больший динамический диапазон, чем каскадная схема на двух биполярных транзисторах. Кроме того, такая схема более качественно работает на высоких частотах позволяя получить высокое усиления при минимальной склонности к самовозбуждению, что наиболее актуально при промежуточной частоте 9050 кГц.

Между первым и вторым каскадами включен четырехзвенный кварцевый фильтр на резонаторах Q1-Q4. Уменьшение полосы пропускания фильтра производится включением дополнительного конденсатора С9 при помощи контактов реле К2.1. Уровень усиления DSB устанавливается при помощи изменения напряжения питания первого каскада УПЧ.

Принципиальная схема гетеродина показана на рисунке 2. Собственно генератор плавного диапазона выполнен на транзисторах VT1 и VT2, он работает в режиме микротоков. Выходом генератора является сам колебательный контур, по этому вслед за ним идет трехкаскадный буферный усилитель на
транзисторах VT3-VT6, который, благодаря высокому входному сопротивлению первого каскада на полевом транзисторе и низкому выходному сопротивлению оконечного двухтактного каскада, обеспечивает полную развязку между самим ГПД и балансными смесителями тракта ПЧ.

Рисунок 2

Изменение частоты ГПД производится скачкообразно (при перемене диапазонов) при помощи переключателя S1, который изменяет индуктивность гетеродинной, катушки L1 путем замыкания её части витков, и переключает контурные конденсаторы. Плавная настройка при помощи переменного конденсатора, который подключается последовательно с С19, а также имеется функция расстройки - при помощи варикапа VD2 (на него напряжение поступает через R3).

ГПД вырабатывает частоты в диапазонах : 29 мгц — 19,95...20,45 Мгц, 28,5 Мгц — 19,45... 19,95 Мгц, 28 Мгц — 18,95...19,45 Мгц, 21 Мгц — 11,95...12,4 Мгц, 14 Мгц — 4,95...5,3 Мгц, 7 мгц — 16,05...16,15 Мгц, 3,5 Мгц — 12,55... 13 Мгц, 1,8 Мгц — 10,88...10,98 Мгц.

Опорный кварцевый генератор для работы модулятора и демодулятора выполнен на транзисторе VT7. В нем используется точно такой же резонатор как и в кварцевом фильтре. Для того, чтобы опустить частоту резонанса на 2..2,4 Мгц используется корректирующая цепь из катушки L2 и конденсатора С25. В процессе настройки подстройкой L2 устанавливается нужная частота.

Схема низкочастотного тракта изображена на рисунке 3. УМЗЧ выполнен на операционном усилителе А1, с двухтактным выходом на транзисторах VT1 и VT2. Резистор R1 расположен на плате и служит для регулировки громкости. Питание на УМЗЧ поступает только в режиме приема. Микрофонный усилитель выполнен на операционном усилителе А2. Усиление каскада определяется сопротивлением резистора R16. Питание на микрофонный усилитель поступает только в режиме передачи.

Рисунок 3

На этой же плате сделана система АРУ на транзисторах VT3 и VT4 с ручными регуляторами усиления и DSB.

На рисунке 4 показана схема соединений узлов трансивера, а также входная цепь на катушке L1 и УРЧ на полевом транзисторе VT1. Входная катушка намотана на керамическом каркасе диаметром 8 мм и длиной 53 мм. Она не имеет сердечника. Число витков — 119. Намотка производится разными проводами. Отводы отсчитываются от верхнего по схеме конца. Отводы от 3-го, 6-го, 12-го, 16-го, 40-го и 74-го витка. Для намотке от начала до 12-го — провод ПЭВ 1,0, для намотки от 12-го до 30-го — провод ПЭВ 0,55, для намотки от 30-го до 40-го витка — провод ПЭВ 0,33, от 40-го до 119-го провод ПЭВ 0,16.

Рисунок 4

Гетеродинная катушка имеет такой же каркас, она содержит 31 виток провода ПЭВ 1,0. Отводы, считая от верхнего по схеме конца : от 7-го, 10-го, 16-го, 17-го и от 23-го витка.

Катушки тракта ПЧ и опорного генератора имеют каркасы диаметром 5 мм с подстроечниками типа СЦР. После намотки они помещаются в латунные или алюминиевые экраны. Контурные катушки ПЧ содержат по 30 витков, катушки связи — по 10 витков. Контурная катушка опорного генератора содержит 30 витков, катушка связи — 7 витков, катушка сдвига частота кварцевого резонатора (L2 рисунок 2) — 20 витков.

Все подстроенные конденсаторы — керамические, типа КПК с минимальной емкостью 2..6 пф, и с максимальной 12..25 пф. Переменный конденсатор настройки — сдвоенный с воздушным диэлектриком на 2X10...495 пф, типа КПЕ-2В от старой радиолы.

Питание от стабилизированного источника напряжение 12В. Реле типа РЭС 49 (паспорт РС4.569.426) и РЭС 47 (паспорт РФ4.500.121), или другие малогабаритные, с минимальной емкостью контактов. Возможно и герконовые переключающие.

Все кварцевые резонаторы на 9050 кГц.

Статья 'SDR FLEX-3000 – трансивер сегодняшнего дня!'

ВВЕДЕНИЕ
В начале 2000-х годов фирма Flex-radio предложила революционный способ обработки и формирования радиосигнала с помощью обычного персонального компьютера, который сегодня есть практически у каждого человека и тем более у радиолюбителя. Первая модель была представлена SDR трансивером Flex-1000. В течение нескольких лет эта модель трансивера был единственной и популярной моделью SDR трансивера. В России несколько человек даже начали выпускать улучшенные копии данного трансивера. Через некоторое время и в других странах начали производить клоны. Время шло, технологии и программное обеспечение развивались.

Все сотрудники компания Flex Radio являются радиолюбителями и ведут постоянный диалог с пользователями своей продукции. Были устранены все недоработки и ошибки, а так же введены улучшения и пожелания пользователей. И наконец, была разработана полная, максимальная концепция SDR трансивера, которая вылилась в производство трансивера Flex-5000, в котором были реализованы все самые последние достижения и передовые технологии. В программе управления трансивером PowerSDR и в схемотехнике трансивера были полностью учтены все пожелания пользователей, максимально эффективно продуман пользовательский интерфейс. Гибкая конфигурация конструктива трансивера позволяет выбрать трансивер в ценовой категории от 3 до 6 тыс. долларов в зависимости от его наполнения, тем самым был закрыт ценовой сегмент трансиверов Delux класса (более подробно о Flex-5000 мы поговорим в следующей статье). Следующим шагом стало упрощение схемотехники и разработка трансивера среднего класса и соответственно средней ценовой категории – Flex-3000, ценою 2000 долларов, и наконец, в 2010 году, был закрыт бюджетный сегмент, ознаменованный выпуском SDR трансивера Flex-1500, о котором я уже рассказывал в предыдущих статьях.

В данной статье, мы рассмотрим средний уровень SDR трансивера, представленный моделью Flex-3000.

В трансивере Flex-3000, в отличие от бюджетной версии Flex-1500, реализован полноценный, 100-ваттный усилитель мощности, работающий на всех любительских диапазонах от 1.8 до 54 МГц. Трансивер штатно укомплектован хорошим автоматическим антенным тюнером, позволяющим согласовывать антенны с сопротивлением от 17 до 150 Ом, что позволяет эффективно защитить передатчик трансивера от повреждения. Полоса обзора трансивера Flex-3000, составляет уже 96 кГц, в отличие от 48 кГц младшей модели Flex-1500(ссылка), но меньше чем в старшей модели FlexSDR-5000, у которого полоса обзора составляет 192 кГц – возможный максимум. Блок питания трансивера 100-Ваттной модели уже должен выдерживать ток 20-25 Ампер. Например, такой или такой.

В трансивере применены самые передовые технологии обработки сигнала. Как было описано в статье "SDR-radio, передовые технологии уже сегодня!", это трансивер SDR класса и обрабатывает радиосигнал после перенесения его из радиочастотного спектра в низкочастотный. Уже на низкой частоте, сигнал оцифровывается высоко скоростным АЦП, имеющим очень хорошие динамические и частотные характеристики. Полная обработка сигнала в самом трансивере, позволила избавиться от звуковой карты и максимально упростить выбор и настройку компьютера, к которому подсоединён трансивер. Управляется трансивер по высокоскоростной шине FireWare-1394. По этой же шине передаётся аудио-поток в/из трансивера. В этом есть небольшое неудобство, так как не все компьютеры на сегодняшний день оснащаются данным интерфейсом. На момент проектирования трансиверов, более скоростных интерфейсов не существовало для того что бы пропустить в компьютер оцифрованный сигнал полосою 192 кГц, разрядностью 24 бит. Потому плату интерфейса FireWare скорее всего придется докупать отдельно, благо, на рынке их присутствует большое количество.

Распаковка

Открывая коробку, в ней видим внимательный подход к клиенту, так же как и в случае с трансивером Flex-1500. Трансивер находится в мягких нейлоновых стойках, которые избавят трансивер от повреждения при случайном падении или ударе коробки при транспортировке. В комплект так же входит диск, с программным обеспечением. Очень приятно, на этот раз диск оказался со свежими драйверами и последней версией программы PowerSDR. Но сильно не обольщайтесь, уже завтра этот софт может стать устаревшим. Скачать самые последние свежие драйвера и самую последнюю версию программы PowerSDR, Вы можете самостоятельно, на сайте производителя www.flex-radio.com. Так же в комплекте идёт кабель питания и кабель FireWare.

Опять же стоит отметить – на всех прилагаемых кабелях присутствуют ферритовые защёлки, которые предохраняют от попадания ВЧ энергии в компьютер и блок питания. Качество изготовления кабелей отменное. Кабель FireWare, выполнен с хорошим экранированием, а кабель питания, для уменьшения просадки напряжения на передачу, сделан двойным. Вероятно, такое исполнение кабеля питания было задумано специально для того что бы он остался гибким. Толстый кабель, подобного сечения, было бы уже трудно сгибать с малыми радиусами.

Первые чувства при открытии коробки были «О боже, какой он огромный!» После общения с маленьким кирпичиком Flex-1500, Flex-3000 показался достаточно большим и тяжелым. 5.5 кг против 1 кг Flex-1500. Сразу же на ум пришла интересная аналогия. Да это же «Синий квадрат Малевича!»
Конечно, это уже не бюджетный QRP трансивер, выполненный в виде маленького кирпичика, а полноценный взрослый аппарат, которым уже может заменить устаревшую классику и применять как основной трансивер.

Общее описание

Корпус трансивера выполнен из прочного металла с качественной покраской. На столе, в шеке, он может красиво и удобно расположиться под монитором - прочности хватит. А можно спрятать корпус в какую-нибудь нишу и трансивер уже не будет видно вообще.

Для любителей классического стиля расположения аппаратуры на столе уже конечно не столько творчества, но для тех, у кого радио шек скажем на балконе расположен – это несомненное удобство. Места занимает очень мало.
По расположению разъёмов Flex-3000 более эргономичен, чем его младший собрат. На передней панели из органов управления и коммуникаций находится все только самое необходимое. Кнопка питания, разъём под тангенту, разъём для подключения электронного ключа и разъём для подключения наушников.

Как и в случае с Flex-1500, в комплектности трансивер отсутствует микрофон. Но это не беда. Проблему отсутствия микрофона можно решить несколькими путями, в зависимости от поставленных целей и задач. Самый простой - трансивер применяется для цифровых видов связи, и микрофон тут в принципе не нужен. Звук передается в трансивер виртуальным звуковым потоком, например из программы UR5EQF или MixWin. Посредствам этих же программ можно осуществлять запись логов. Так же, можно использовать микрофон и наушники, подключенные к компьютеру. Передача сигнала так же будет осуществляться посредствам виртуальных потоков.

Другой простой способ – применить готовый микрофон от КВ трансиверов Yaesu серии FT-8x7, к примеру, MH-31a8j, распайка разъёма в трансивере FLEX-3000 совпадает с распайкой микрофонных разъёмов этих трансиверов. В этом случае, просто достаточно подключить микрофон к трансиверу и можно выходить в эфир.
Ну а если у вас нет, готового микрофона, то можно сделать бюджетный вариант своими руками. Тут можно нафантазировать целую гору вариантов, от копии фирменного микрофона, до настольного микрофона с педалью под столом. Главное - есть схема распайки микрофонного разъема трансивера FLEX-3000.

Попробуйте немного поискать в ваших запасниках, находите любой электретный микрофон – таблетку, парочку резисторов и парочку конденсаторов. Если у вас ничего подобного нет, то этого добра сейчас масса во многих магазинах радиодеталей или радио рынке. Берем в руки паяльник, и по схемам, которых в интернете достаточное количество, изготавливаем микрофон. К примеру, вы можете использовать следующую схему:

Для любителей сверх высококачественного Hi-Fi звучания, можно порекомендовать применение фирменных микрофонов известной американской компании HeilSound. Вот целый список микрофонов.

Наличие ключа на передней панели это – несомненно, большое удобство! Просто подключаем ключ к трансиверу и можно работать в CW. В табличке указано, к каким контактам разъёма подключать контакты ключа.

При большой необходимости, CW-ключ можно подключить к com-порту компьютера, по следующей распиновке:

Задняя часть трансивера так же не очень богата на разъёмы. Опять же, выведен только самый необходимый минимум.

Разъём питания так сделан, что перепутать полярность невозможно! Он просто не влезет иначе, чем это позволено. Мелочь, а приятно, благо умельцев спутать полярность на просторах нашей родины хватает. Под разъёмом присутствует болт заземления с двумя шайбами. Наилучшим вариантом крепления заземления тут будет вот такое.

Антенный разъём применён BNC-типа. По словам разработчиков – это сделано с целью удешевления аппарата при технологической сборке. Так же BNC разъём имеет более стабильные параметры, чем SO-239. У подавляющего большинства классических трансиверов антенный разъём применён типа SO-239. На этот случай Flex Radio, комплектуют свой товар переходником BNC – SO-239. Опять же приятно! Усилитель мощности трансивера выдаёт стандартные 100 Вт мощности и выполнен на полевых транзисторах RD70HHF1 разработанных специально для линейных усилителей мощности.

Что бы максимально защитить выходной каскад трансивера и облегчить работу в эфире, трансивер имеет встроенный автоматический антенный тюнер. Полоса настраиваемых сопротивлений достаточно широка и позволяет согласовать не только большинство распространённых фирменных направленных или вертикальных антенн, но и правильно выполненных верёвочных антенн. Главное – что бы ВЧ энергия минимум возвращалась по кабелю назад к трансиверу. Почитать более подробно на эту тему, отправляю вас на 4-ую статью об SDR.

Тут же находиться разъём FireWare, для подключения шнура управления. Рядом расположены два разъёма RC-типа. Разъём PTT предназначен для подключения педали или кнопки ручного управления передачей. Разъём TXout может управлять внешним усилителем мощности или трансвертером. Характеристики времени задержки сигнала относительно сигнала PTT можно в программе PowerSDR задавать вручную. Из фирменных педалей могу порекомендовать: MFJ-1709, Heil FS-3 или, если совместно с трансивером управлять усилителем, то Heil FS-2.

Дальше идёт разъём для подключения внешней активной акустической системы или усилителя. Это стерео выход, позволяющий прослушивать две приёмные частоты или бинуарным способом слушать псевдо стерео сигналы высококачественных АМ радиостанций радиовещательного диапазона. Максимальный уровень выходного сигнала составляет -10 дБ на нагрузке 600 Ом. Если по русский – это линейный стерео выход.
Последний крайний разъём это фирменная шина FlexWare.

Выполнена она в стандартном 9-пиновом разъёме DB-9F. Этот разъём содержит в себе несколько сигналов: собственно шина Flex-ware, которая в настоящее время не активирована в программе и предназначена для дальнейших расширений функций. Исходя из того что это обычная шина I2C, можно пока предположить что по ней можно будет управлять тюнером, преселектором, коммутатором, поворотным устройством или еще чем-нибудь.

На настоящий момент в данном разъеме еще есть линейные моно вход и выход аудио сигнала, что позволяет подключать внешние формирователи сигналов, микшеры и другие устройства обработки аудио сигнала. Например, это может быть система для формирования ESSB сигнала или магнитофон для регистрации звука или мониторинга, внешние декодеры цифровых сигналов.

Измеренные характеристики

Максимальная полоса обзора трансивера SDRFlex-3000 составляет 96 кГц. Смотрим картинку.

Хотя, в режиме обычной работы в масштабе 1:1 отображается только 48 кГц. И это более удобно в плане повседневного использования и удобства настройки. Сравните верхний скрин и нижний

Чувствительности трансивера хватает, что бы охотиться за DX как в SSB режиме, так и CW.
Смотрим скриншоты:

Минимальный сигнал, который я смог услышать сидя в наушниках, с включенным предварительным усилителем составил -129 дБм.

На минимальных и максимальных значениях сигнала программа немного врёт. Потому я сфотографировал значения цифр с прибора для особо въедливых читателей.

Эти цифры соответствуют уровню чувствительности в 80 нановольт. Неплохо, однако!!!
Без предусилителя, чувствительность составляет -120 дБм или 0,22 мкВ
Начиная с 2-3х баллов, программа показывает правильные уровни сигнала. Также, на максимальных значениях входного сигнала S-метр начинает опять привирать.
Максимальный уровень, после которого АЦП входит в ограничение составляет -7 дБм или 100 мВ, а с аттенюатором, это значение повышается до +2 дБм или 0.28 Вольт

Максимальный уровень с аттенюатором

Из полученных цифр легко высчитать динамический диапазон приёмника. Он составляет 120-7=114 дБ. Этого ДД вполне хватит, что бы работать в эфире без напрягов с соседом, находящимся на расстоянии где то метров 700-1000м, который будет работать на 100-ватный аппарат.

Одним из животрепещущих вопросов на сегодняшний день стоит вопрос цены современной связной аппаратуры. В ценовую категорию 1500-2500 долларов входят несколько трансиверов среднего класса известных фирм, которые сегодня составляют основную массу потребительского рынка. В эту же нишу входит и SDR трансивер Flex-3000. Он относится к современным трансиверам среднего класса, но это еще не всё. Трансивер Flex-3000 относится не только к трансиверам среднего класса, но и к трансиверам абсолютно иного, нового класса - класса программных трансиверов, за которыми уже совсем ближнее будущее. Еще несколько лет, и трансивер будет неотделим от компьютера. Технология SDR - это первый шаг к освоению новой платформы. Что бы понять, почему трансивер стоит таких немалых денег, давайте разберем аппарат по частям, заглянем во внутрь и ответим на несколько вопросов. Чем же нас Флексы могут порадовать? Каковы новейшие достижения применяются в схемотехнике трансивера? Чем применяемая схемотехника, отличается от классики и каковы её параметры? Что такого можно было установить в столь плоский корпус и чем обеспечиваются хорошие приёмо-передающие характеристики. Ответим на эти вопросы и придём к пониманию, почему Flex-3000 стоит именно столько сколько стоит.

Открываем трансивер

Для открытия трансивера необходимо открутить 3 болта с торца и 7 болтов с нижней стороны трансивера. Ножки трансивера откручивать НЕ НУЖНО!

С передней части корпуса необходимо открутить 2 гайки, фиксирующие разъём наушников и CW – ключа.

После этого очень аккуратно нужно начать сдвигать верхнюю часть корпуса по направлению, показанному стрелкой.

Первое что мы видим – хорошо продуманная компоновка плат и качественная пайка. Это первое на что я обратил внимание. В такой плоский корпус умудриться вставить полноценный 100-ваттный трансивер, со всевозможным наполнением – это нужно постараться. Основные элементы приёмо-передающего тракта спрятаны в хорошие экраны. Вся начинка цифровой обработки так же помещена в свои экраны. Совместно с применением современной сверхмалошумящей схемотехники, обеспечены очень хорошие параметры по шумовым характеристикам и сведены к возможному минимуму помехи от наводок электромагнитного характера и цифровых шин передачи данных при обработке сигналов. Некоторое недоумение возникло по поводу радиатора усилителя мощности. Как можно в таком плоском корпусе обеспечить эффективный отвод тепла? Однако можно! Как? Ниже по тексту узнаете…

Сразу отмечу! Если вы совершенно случайно перепутаете полярность при подключении шнура питания, или трансивер перестанет включаться, то вам придется раскрыть трансивер и лезть вовнутрь, что бы поменять предохранитель.

Предохранитель находится непосредственно возле разъёма питания. Его номинал – 30 А. Похожие предохранители применяются в автомобилях, и поэтому найти их легко можно в автомагазинах или на радиорынке.

Управление режимами и связь с РС

Интерфейс связи с компьютером реализован на отдельном чипе TSB41AB2. Он включает в себя 2 физических порта -IEEE1394, который соединяется непосредственно с чипом управления TCD2210. В Flex-3000 второй физический порт не реализован.
Управление всеми аудио потоками осуществляется специальной микросхемой TCD2210 т.н. системой на кристалле ASIC, включающей в себя 32-битный ARM-процессор. В этой микросхеме осуществляется обработка цифровых аудио потоков, приведение их к стандарту IEEE1394, управление режимами приёма\передачи, управление синтезатором частоты.
Для желающих ознакомиться поближе с описанием микросхем – идём на сайт TCTECHNOLOGIES. А порт IEEE1394 смотрим тут:

Выбор столь специфического интерфейса связи не случаен. Для того что бы обработать полосу частот в 96-192 кГц с разрядностью 24 бита с минимальной задержкой, необходимо обеспечить хорошую пропускную способность канала связи. Интерфейс USB 2.0 позволил с нужными характеристиками обработать всего 48 кГц, и на нём был реализован бюджетный проект Flex-1500 (ссылка). Поэтому разработчики от интерфейса USB 2.0 отказались и применили интерфейс IEEE1394, который смог обеспечить нужную скорость. На время разработки Flex-3000 более скоростного и широко распространённого интерфейса еще не было. Сегодня уже есть интерфейс USB 3.0, который совершеннее и быстрее интерфейса IEEE1394. Будем надеяться, что в скором времени Флексы перейдут на него.

Тракт приёма\передачи и АЦП\ЦАП

Для оцифровки сигналов на приём и передачу в Flex-3000 применена микросхема фирмы CIRRUS LOGICCS42448. Это современный, 24-битный высокоскоростной АЦП\ЦАП с очень высокими динамическими характеристиками и минимальными собственными шумами. К этой же микросхеме подключаются аудио сигналы с шины Flex-ware и обрабатывается сигнал с микрофона.

Микросхема CS42448 имеет следующие характеристики:
Динамический диапазон АЦП – 105дБ.
Соотношение Сигнал\Шум АЦП\ЦАП – 98дБ.
Полоса частот, обрабатываемых АЦП\ЦАП – 192кГц
Даташит на микросхему смотрим тут.

В трансивере Flex–3000 реализованы только половина от всех возможностей микросхемы – 96 кГц полосы оцифровки. Это можно объяснить, как маркетинговый ход, выполненный специально. Что помещает трансивер в среднюю ценовую категорию.
Всего в микросхеме 6 дифференциальных входов АЦП и 8 дифференциальных выходов ЦАП:
2 входа АЦП используется для приемника, один для микрофона и один – линейный вход с шины Flex-ware.
2 выхода используются для смесителя передатчика, один выход идет на усилитель для наушников, один на выход для внешней акустической системы и один выход идет на шину Flex-ware.

На плате микросхема АЦП\ЦАП помещена вместе с синтезатором и трактом приёма\передачи в одно пространство и находится в хорошо экранированном корпусе. Это позволило минимизировать наводки и помехи от цифровых линий и процессора.

Смеситель RX\TX

Во всей линейки трансиверов фирмы FlexSDR применен смеситель приема и передачи выполненный по одной и той же схеме. Квадратурный балансный смеситель на высокоскоростных аналоговых ключах. Использована схемотехника быстрого квадратурного мультиплексирования на основе микросхемы 74CBT3253PW. Данная схемотехника имеет самую максимальную энергоотдачу и максимальный КПД преобразования. Убедиться в этом можно, расписав графически временные диаграммы работы ключей. Отдельно микросхема используется для передачи, и отдельно - на приём.
В МШУ приёмника, применены новые микросхемы от Texas Instruments - THS4520. По параметрам они схожи с INA163, применяемые в SDR-1000. Схемотехника так же практически одинакова с Flex-1500. Даташит на микросхему смотрим тут.

Тракт передачи реализован уже иначе, чем в младшей модели трансивера Flex-1500 . Тут уже есть микросхемы буфера между ЦАП и смесителя – как и приёмном тракте, стоит микросхема THS4520. Примечательной особенностью нашего SDR-трансивера является применение элементов подавления зеркального канала. Буферный каскад перед смесителем введён не случайно. Этот каскад управляется от ДСП и посредством смещения регулируется усиление по канально и соответственно разбаланс каналов. От величины разбаланса амплитуд и фаз каналов зависит величина подавления зеркального канала. Т.о. проводя анализ сигналов в ДСП и имея обратную связь с буфером, автоматический можно давить зеркальный канал. Причём, такой же элемент настройки есть и в приёмном тракте. Так реализована автоматика подавления зеркального канала на приём и на передачу.

Синтезатор гетеродина

Одним из самых важных элементов SDR-трансивера является его синтезатор гетеродина. Во многом от него зависит качество картинки спектра радиоэфира на экране монитора, количество пораженных частот - спурами - (продуктами нелинейного построения синусоиды сигнала), нижний уровень шумовой дорожки в ближней зоне от сигнала (при расстройке 1-5 кГц от 0 Гц), качество излучаемого сигнала в радиоэфир. И в целом – комфортная работа в эфире.

Стандартом де-факто с недавнего времени в структуре построения гетеродинов стало применение DDS-синтезаторов.

DDS-синтезатор (Direct Digital Synthesis) – это новый тип синтезаторов частоты. Выполнен он на принципе математического построения синусоиды. В отличии от синтезаторов классического типа, выполненного с применением петли фазовой автоподстройки частоты (Синтезатор с ФАПЧ, он же PLL), в синтезаторе DDS отсутствуют частотозадающие LC цепочки. Тем самым мы имеем потрясающую стабильность частоты, определяемую внешним высокоточным тактовым генератором. И возможность перестройки синтезатора с шагом в доли Герца. Современная технология высокой интеграции цифровых схем позволяет выполнить синтезатор DDS на одной микросхеме с минимум внешних элементов. Стоимость таких синтезаторов на сегодняшний день получается низкой и их можно применять даже в самодельных конструкциях.

В трансивере Flex-3000 применен синтезатор фирмы AnalogDevices AD9959. На сегодняшний день – это один из самых «чистых» и качественных DDS-синтезаторов. Тактируется DDS-синтезатор с помощью высококачественного и точного кварцевого генератора частотою 38.400 кГц. Стабильность его составляет +\-2.5 ppm, что составляет уход частоты всего 2.5 Гц на 1 МГц.

Описание на синтезатор частоты смотрим тут.

Для сравнения приведены шумовые характеристики синтезатора, применяемого в первой модели трансивера Flex-1000

Шумовые характеристики DDS-синтезатора на AD9854

Из графиков видно, что синтезатор на новом DDS-чипе работает куда лучше. Новый чип имеет более чистый спектр, а это значит что на экране мы увидим и услышим меньше пораженных частот, меньше «свистулек» будет раздражать, и в общем будет меньше помех от побочных преобразований. В ближней зоне (1-2 кгц) так же меньше помех будет наблюдаться, в случае, если под боком включиться мощный сосед.

Для примера, когда работал трансивер Flex-1000, то некоторые часто используемые частоты на 10, 15 и 20-метровом диапазоне были поражены помехой от синтезатора. Соответственно работать в эфире на этих частотах и вблизи них не представлялось возможным. В трансивере Flex-3000 во многом эти проблемные участки устранены, благодаря применению нового более дорогого и совершенного чипа DDS-синтезатора.

Еще одной особенностью нового DDS-чипа является наличие одновременно 4-х парафазных канала генерации частоты. Благодаря этому получилось разделить в пространстве на плате тракт передачи и тракт приёма. Они меньше стали друг на друга влиять и соответственно меньше стало наводиться помех на элементы трактов. Теперь каналы генерации I и Q для приёма и передачи имеют свои выходы. Нагружаются они на двухфазные трансформаторы, а потом фильтруются своим ФНЧ. Применяя такое схемотехническое решение, хорошо подавляются синфазные помехи и упрощается схемотехника фильтрации.

ДПФ и предусилитель

На входе приёмника стоят 3х-контурные ДПФ с гибридной связью, что обеспечивает хорошую селективность. При расстройке на одну октаву подавление за пределами полосы пропускания у такого полосового фильтра превышает 40 дБ. В дополнении ко всему на входе ДПФ стоит последовательный колебательный контур, который давит побочный канал приёма. Схемное решение очень мудрое т.к. смеситель в трансивере хоть и очень хорош, но всё же не идеален и имеет маленький недостаток в виде приёма помех на нечётных гармониках. Дополнительно фильтрацией высших гармоник по приёму занимается ФНЧ 7-ого порядка, который стоит на самом входе радиоприёмного тракта. Катушки ДПФ выполнены на высококачественных стандартных индуктивностях фирмы Coilcraft. Вопросы вызывает применение полупроводниковых ключей в коммутации ДПФ. Есть мнение, что применение полупроводников коммутации снижает динамический диапазон приёмника и может вызвать прямое детектирование сигнала. И для того что бы все эти проблемы избежать – необходимо применять только высококачественные реле.

Думаю это мнение не безосновательно, но было основано на том, что раньше применяли в качестве коммутации pin-диоды. В данном же трансивере применяются специализированные ключи, которые не ухудшаю характеристик приёмника и не подвержены прямому детектированию.

Предусилитель выполнен на микросхеме, разработанной для входных каскадов радиоприёмных устройств - GALI-74, которая имеет нормированное усиление в широкой полосе и обладает хорошим динамическим диапазоном по входу.
Описание смотрим тут.

ФНЧ

2х-звенные ФНЧ 7-ого порядка в трансивере выполнены по стандартной П-образной схеме. Применены 7 фильтров на все основные диапазоны. Подавление 2-ой гармоники таким ФНЧ составляет лучше 40 дБ и лучше 60 дБ подавлены высших гармоник.Следует отметить, что вся коммутации осуществляется высококачественными реле японского производства. Это вам не китайские Tanbo, JRC или, что ещё хуже NO NAME. Словом – настоящий Американец!

Автоматический антенный тюнер

Одной из самых замечательных особенностей трансивера Flex-3000 является наличие встроенного автоматического антенного тюнера. По схемотехнике, данный тюнер похож 1:1 на тюнеры фирмы LDG. В конструкции трансивера Flex-1000 применялся модуль тюнера LDG Z-100, о чем нужно было указать при конфигурации трансивера в программе. Вероятно, что тут стоит нечто похожее. В узле перестройки индуктивности применено 8 звеньев и 7 звеньев в узле перестройки ёмкостей. Схемотехника тюнера позволяет подключать LC – звенья параллельно или последовательно с нагрузкой. Это означает, что тюнер сможет перестраиваться в гораздо более широкой полосе сопротивлений, чем это реализовано в классических трансиверах известных фирм. При данной схемотехнике тюнер может подстраивать КСВ=3:1 , или более широкий диапазон КСВ=7:1.5

На фото ниже хорошо виден датчик КСВ-метра, по которому тюнер определяет рассогласование антенны, с выходом усилителя мощности.

Драйвер и оконечный усилитель

За годы изготовления трансиверов, схемотехника усилителей отработана очень хорошо и находится на достаточно высоком уровне. Сегодня разработаны и повсеместно используются транзисторы, специально предназначенные для линейного усиления сигналов на КВ или УКВ диапазонах. Соответствующее типовое решения можно увидеть так же в нашем трансивере. Драйвер выполнен на полевых транзисторах средней мощности RD16HHF1, они специально разработаны для линейного усиления сигнала в полосе частот 1-60 МГц и имеют высокий КПД усиления. Оконечный каскад выполнен на полевых транзисторах RD70HHF1. Это мощные транзисторы, так же предназначенные для оконечных каскадов. Высокое КПД усилителя обеспечивается двухтактным включением каскадов и работа в режиме АB, что так же способствует подавлению синфазных помех при усилении и подавлению чётных гармоник.

УНЧ и разъёмы

Разъём для наушников, для тангенты и CW-ключа вынесены на плате в одно место. УНЧ трансивера сделано на малошумящей микросхеме LM4911, предназначенной для применения в аппаратуре класса Hi-Fi и усиления сигнала для наушников.

Описание микросхемы смотрим тут.
Наушники и CW-ключ подключаются с помощью качественных разъёмов 1/8” . Разъём тангенты совместим с 8-контактным разъёмом фирмы Yaesu. Это означает, что легко можно подключить тангенту от трансивера Yaesu FT-857/897 или совместимый переходник для микрофонов HEIL. В случае применения высококачественных микрофонов HEIL, трансивер можно сконфигурировать для ESSB передачи.

Вентиляция и охлаждение

Реализуя 100-ваттный усилитель мощности в таком плоском корпусе, необходимо обеспечить очень эффективный отвод тепла. Это возможно, применяя принудительную вентиляцию. После открытия аппарата, первые мысли были о том каким образом 100 Вт мощности, уходящие в тепло, отводятся? Под основной платой можно увидеть массивный, но плоский радиатор.

В непосредственной близости к радиатору стоят 2 мощных вентилятора. Пространство под вентиляторами специально сформировано перегородками так, что воздух прогоняется прямиком по поверхности радиатора.

В корпусе по бокам трансивера так же предусмотрены вентиляционные отверстия. Тем самым происходит очень эффективный отвод тепла, в столь плоском корпусе.

Итого

За вполне адекватные деньги сегодня можно позволить себе купить современный СДР трансивер SDRFlex-3000, который полностью удовлетворит все потребности среднестатистического радиолюбителя. Это и охота за DX и возможность пообщаться с друзьями на 80-метровом диапазоне. Блеснуть ESSB сигналом и поработать цифровыми видами связи не заморачиваясь на необходимость правильного подключения множества кабелей.

Данный трансивер может быть не только вторым, но и основным в шеке радиолюбителя. Со временем, когда вы сможете оценить все прелести цифровой обработки сигнала, сравнить SDR технологию с классической обработкой – данный аппарат, несомненно, станет первым. А потраченные на трансивер деньги окупятся приятными впечатлениями от использования, душевным спокойствием и удовлетворением от времени, проведённого в эфире с трансивером Flex-3000.

radioexpert.ru,

д.и.г. Высоковольтный источник питания постоянного тока 250 кВ с хитроумным трюком для переключения полярности - diy Physics Blog

Высоковольтные источники постоянного тока используются энтузиастами науки для питания электронных и рентгеновских трубок, зарядки высоковольтных конденсаторов и электростатического заряда. левитаторы »и т. д. Во многих из этих источников питания используется обратный трансформатор для выработки высокого напряжения высокой частоты (переменного тока), за которым следует« умножитель Кокрофта-Уолтона »для выпрямления и резкого увеличения напряжения.

В умножителе Кокрофта-Уолтона используется каскадный ряд диодов и конденсаторов для генерирования высокого напряжения постоянного тока от входа переменного тока через топологию схемы, в которой используются диоды для зарядки конденсаторов параллельно и их последовательной разрядки. Выходная полярность умножителя Кокрофта-Уолтона зависит от того, как ориентированы его диоды, поэтому полярность выхода (относительно земли) высоковольтного источника постоянного тока обычно устанавливается при проектировании.

Однако, поскольку некоторые из наших физических экспериментов требуют той или иной полярности, мы строим наши умножители Кокрофта-Уолтона с дополнительным конденсатором, чтобы наши высоковольтные источники питания могли выводить положительное или отрицательное высокое напряжение относительно земли.Схема нашего «обратимого» Кокрофта-Уолтона показана на следующем рисунке (щелкните, чтобы увеличить):

Если высоковольтный выход переменного тока обратного хода подключен к точке «A» умножителя напряжения, а точка «B» ”Подключен к земле, то выход в точке“ D ”будет положительным. Однако, если точка «C» получает высоковольтный переменный ток, а точка «D» соединена с землей, тогда точка «B» будет отрицательной.

Как показано на следующих рисунках, умножитель должен быть построен на куске чистой перфорированной платы:

Затем печатная плата подвешивается с помощью нейлоновых прокладок внутри пластикового корпуса (того типа, который используется для хранения продуктов):

Соединители типа «банан» затем устанавливаются на пластиковый контейнер и подключаются напрямую к точкам A, B, C и D.Разъемы должны быть очень хорошо герметизированы с помощью силикона RTV:

Затем разъемы маркируются следующим образом:

Затем пластиковый контейнер должен быть полностью заполнен чистым минеральным маслом (его можно купить в аптеке). погрузите схему умножителя в воду, чтобы предотвратить пробой высокого напряжения между компонентами:

Для управления умножителем можно использовать любой высоковольтный источник питания переменного тока. Наша любимая схема - это следующий преобразователь постоянного тока в переменный (щелкните диаграмму, чтобы увеличить):

В этом источнике питания переменного тока двухтактный генератор управляет обратным трансформатором телевизора от старого цветного телевизора (обратный преобразователь без встроенного тройника). ).Хорошо известный прием заключается в том, что исходный первичный элемент обратного хода не используется. Вместо этого новые первичные обмотки изготавливаются путем наматывания двух наборов по четыре витка каждого изолированного провода № 18 вокруг оголенного сердечника обратноходового трансформатора. Обратная связь для генератора получается через дополнительную катушку из 4 витков провода №24, намотанного вокруг сердечника:

Как показано на рисунке выше, мы встроили низковольтный источник постоянного тока прямо в шасси. Мы изменяем напряжение, используя внешний вариак (на рисунках не показан).В нашем источнике питания 12 В, подаваемое на вход драйвера обратного хода, дает около 250 кВ постоянного тока на выходе умножителя. Мы измерили до 300 кВ постоянного тока при более высоких входных напряжениях, но коронация и пробой становятся очень страшными, поэтому мы не пытались выйти за пределы.

ОБНОВЛЕНИЕ 2/10/2012: Дополнительные сведения о создании драйвера резонансного трансформатора, а также об обмотке первичной обмотки для обратноходового трансформатора см. В следующих двух сообщениях:

http: // www.diyphysics.com/2012/02/10/universal-resonant-transformer-driver-high-voltage-flyback-driver/

http://www.diyphysics.com/2012/02/10/adding-your-own- трансформатор обратного хода первичного преобразователя в высоковольтный для резонансного возбуждения /

На следующем видео на YouTube показана ранняя версия нашего поделочного источник питания, используемый для управления электростатическим «лифтом», который Шанни построил много лет назад в рамках школьной научной ярмарки:

httpv: //youtu.be/p10OUADRr2M

В нашем d.i.y.В книге «Изучение квантовой физики через практические проекты» мы показываем множество способов использования этого источника питания для выполнения сложных физических экспериментов.

ОПАСНО! Обратите внимание, что это опасное устройство! Он создает высокое напряжение, которое может вызвать очень болезненный или смертельный удар электрическим током. Кроме того, могут возникать искровые разряды, которые могут воспламенить легковоспламеняющиеся материалы или летучую атмосферу. Помните, что конденсаторы сохраняют заряд долгое время после отключения питания.Перед тем как прикасаться к высоковольтным шинам, тщательно разрядите их!

Посетите www.prutchi.com и www.diyPhysics.com, чтобы узнать о других передовых д.и.у. проекты, и не забудьте проверить наш новый d.i.y. Книга по квантовой физике:

Как собрать дрон с квадрокоптером на Arduino: пошаговый проект DIY

Как партнер Amazon я зарабатываю на соответствующих покупках.

Если вам нравится идея создать свой собственный квадрокоптер, но вы не знаете, как и с чего начать, вы определенно находитесь на правильной странице.Мы знаем, насколько трудным и разочаровывающим может быть исследование, поэтому мы решили сделать руководство по созданию собственного квадрокоптера с использованием платы Arduino. Мы надеемся, что она окажется для вас полезной.

И, чтобы вы еще больше воодушевились своим предстоящим проектом, вот квадрокоптер Arduino в действии:

Создание собственного квадрокоптера с нуля включает в себя много часов и тяжелую работу. Поэтому, если терпение не является вашей сильной стороной и если вы не обладаете необходимыми навыками программирования, вы можете выбрать комплект квадрокоптера, который содержит необходимые детали и поставляется с инструкцией.Этот проект на самом деле не предполагает серьезного строительства, а скорее представляет собой проект типа «собрать все части вместе, следуя инструкциям». Обычно это делается через час или два, и сразу после этого вы готовы взлететь в небо!

Однако с этими комплектами квадрокоптеров вы пропустите долгие часы и пот, потраченные на строительство, и на то, чтобы понять суть вашей птицы и то, как она тикает. Кроме того, вы упустите непреодолимое чувство удовлетворения, когда впервые взлетите с квадроциклом ручной работы.

Весь процесс создания квадроцикла - это то, что любят заядлые любители дронов. Вас просто зацепит чувство участия во всем процессе, от выбора деталей, проектирования схем до программирования платы полетного контроллера Arduino. Но здесь мы забегаем вперед, так что давайте начнем с самого начала.

Общее «Quad Science»

Как следует из названия, квадрокоптер - это летательный аппарат с четырьмя электродвигателями и четырьмя пропеллерами.По сравнению с другими радиоуправляемыми летательными аппаратами, квадроцикл, как и другие мультироторные двигатели, имеет наиболее устойчивую платформу благодаря своей другой конструкции, а также направлению и разнице между четырьмя усилиями, которые он создает. Благодаря этой стабильности квадроциклы идеально подходят для воздушного наблюдения и съемок. Они бывают всех форм и размеров. От самых маленьких, которые умещаются на ладони, до больших, способных поднимать серьезное съемочное оборудование и подвесы. Вы будете удивлены, узнав, какой вес могут нести большие дроны!

Теперь, в отличие от традиционного вертолета, квадроцикл полагается на свои четыре винта для создания подъемной тяги за счет совместной работы.Каждый ротор поднимает около четверти общего веса, что позволяет нам использовать меньшие и менее дорогие двигатели. Вы в основном управляете движением квадроцикла, изменяя количество мощности, которое каждый двигатель передает своим винтам.

Двигатели расположены в каждом углу воображаемого квадрата. На одной диагонали у вас есть два двигателя, которые вращаются по часовой стрелке, а остальные два на противоположной диагонали вращаются против часовой стрелки. Если бы это было не так, квадрокоптер вращался бы, как традиционный вертолет, только тогда, когда умирает хвостовой винт.

Для поддержания баланса квадроцикл полагается на данные, которые он собирает от внутренних датчиков, и регулирует мощность, которую он отправляет на каждый двигатель, так, чтобы весь дрон был выровнен. Чтобы все время поддерживать баланс, в квадроцикле используется продвинутая система управления, которая обычно выполняет настройки автономно, и именно здесь ваша плата Arduino и ваше программирование вступают в игру. Этот тип самостабилизации сделает ваш дрон вполне доступным для полета, так как вам не придется постоянно беспокоиться о потере контроля и повреждении квадроцикла.

Обычно каждый квадроцикл способен выполнять четыре типа движения: высота, крен, рыскание и тангаж. Каждое из этих движений контролируется силой тяги, создаваемой каждым ротором. Вот почему вам нужно будет запрограммировать пульт дистанционного управления, чтобы он знал, сколько мощности отдавать и на какой ротор ее отдавать.

Каждый квадрокоптер комплектуется платой микроконтроллера с датчиками на ней, в вашем случае - платой Arduino. Эта плата вместе с выбранными вами компонентами управляет двигателями.Вам решать, насколько самоконтролируемым вы хотите, чтобы ваш квадроцикл был. Вы можете использовать только базовые, такие как гироскоп, или кучу других, более продвинутых датчиков, таких как барометр, или GPS, или даже сонар, чтобы ваш квадроцикл мог обнаруживать и избегать препятствий, которые находятся в его пределах. способ.

Квадроциклы

, как и все дроны, обладают широкими возможностями настройки, и вы действительно можете создать такой, который будет соответствовать вашим интересам. Это главная привлекательность процесса DIY для многих энтузиастов. Если вы интересуетесь фотографией, видео, гонками на дронах или просто летаете ради развлечения, вы обнаружите, что квадрокоптер может предложить что-то для вас.Беспилотные летательные аппараты легко адаптируются и настраиваются, и мы думаем, что вам понравится настраивать тот, который соответствует вашим предпочтениям.

Компоненты, которые потребуются для вашего квадроцикла

Каждый квадроцикл должен включать в себя элементы, перечисленные ниже, чтобы летать. Вот краткое изложение каждой из различных частей четырехугольника, и мы рассмотрим их более подробно по ходу статьи:

  • Frame - «Костяк» квадрокоптера. Рама - это то, что удерживает вместе все части вертолета.Он должен быть прочным, но с другой стороны, он также должен быть легким, чтобы двигатели и батареи не изо всех сил удерживали его в воздухе.
  • Двигатели - Тяга, которая позволяет квадрокоптеру взлетать, обеспечивается бесщеточными двигателями постоянного тока, каждый из которых отдельно управляется электронным регулятором скорости или ESC.
  • ESC - Электронный регулятор скорости похож на нерв, который передает информацию о движении от мозга (полетный контроллер) к мышцам рук или ног (моторам).Он регулирует мощность, которую получают двигатели, что определяет скорость и изменение направления квадроцикла.
  • Пропеллеры - В зависимости от типа квадроцикла, который вы строите, вы можете использовать винты от 9 до 10 или 11 дюймов (для стабильных полетов с аэрофотосъемкой) или 5-дюймовые гоночные винты для меньшей тяги, но большей скорости.
  • Батарея - В зависимости от установленного максимального уровня напряжения вы можете выбрать батареи 2S, 3S, 4S или даже 5S. Но для стандартного квадроцикла, который планируется использовать для аэросъемки или фотосъемки (просто пример), вам понадобится 11.Аккумулятор 4 В 3S. Вы можете выбрать 22,8 В 4S, если вы строите гоночный квадроцикл и хотите, чтобы двигатели вращались намного быстрее.
  • Плата Arduino - Выбор конкретной модели зависит от типа квадрокоптера, который вы хотите построить. Строите ли вы для аэрофотосъемки, гонок, фристайла или чего-то еще. О правильном выборе платы мы поговорим далее в статье.
  • IMU - Доска, которая в основном (в зависимости от вашего выбора) представляет собой сумму различных датчиков, которые помогают вашему квадроциклу знать, где он находится и как его выровнять.
  • RC Controller - Выбор передатчика зависит от выбора протокола, который вы собираетесь использовать, и приемника сигнала, который установлен на дроне.

Это основные компоненты дрона. Читайте более подробное описание каждого компонента:

Деталь # 1 - Рама

Хотя может возникнуть соблазн купить предварительно собранный комплект рамы, сборка рамы самостоятельно может помочь вам начать настоящий процесс DIY. Рама вашего квадрокоптера должна обладать прочностью, но она также должна быть достаточно гибкой, чтобы компенсировать вибрации, производимые двигателями.В нем должны быть следующие детали:

  • Центральная удерживающая пластина - для монтажа электроники.
  • Руки - четыре руки на четверке.
  • Кронштейны для двигателей - их нужно четыре, чтобы можно было подключить двигатели на каждом конце рычага.

Рама может быть сделана из алюминия, углеродного волокна или дерева, но в основном для дужек используется алюминий. Точнее, квадратные полые направляющие рычагов изготовлены из алюминия.Они относительно легкие, жесткие и дешевые. Но, поскольку они не известны как отличные компенсаторы колебаний двигателя, как углеродное волокно, они могут сбивать с толку датчики.

Углеродное волокно гораздо лучше поглощает вибрации двигателя и является наиболее жестким. Но он же самый дорогой. Углеродное волокно - лучший выбор, но это во многом зависит от вашего личного бюджета.

Древесные плиты также лучше поглощают вибрацию двигателя, но они довольно хрупкие и могут легко сломаться в случае аварии.Вы также можете выбрать предварительно изготовленную раму, которую нужно только собрать, и вы можете узнать больше о них в нашей статье о комплектах рамы.

Ознакомьтесь с нашими предложениями по лучшим готовым каркасам, которые вы можете использовать в качестве основы для своего проекта:

Деталь № 2 - Бесщеточные двигатели

Эти двигатели почти такие же, как и традиционные двигатели постоянного тока, но на их валу нет щетки, которая предназначена для изменения направления мощности, проходящей через катушки.При покупке этих моторов необходимо проверить их технические данные.

Самыми важными из них являются «Kv-рейтинг», который сообщает вам количество оборотов в минуту, которое двигатель способен генерировать с определенным количеством электроэнергии.

Также вам понадобятся двигатели, которые вращаются против часовой стрелки, чтобы противодействовать эффекту крутящего момента стоек. Чтобы лучше понять эту тему, рекомендуем ознакомиться с нашей статьей о двигателях дронов.

Для двигателей (или роторов), мы предлагаем следующие модели:

Деталь # 3 - Винты

Пропеллеры создают тягу, и каждому мотору нужен один, чтобы квадрокоптер мог летать.Убедитесь, что вы покупаете подходящие вращающиеся пары гребных винтов для вращения по и против часовой стрелки. Их можно купить с различным шагом и диаметром.

Вы должны выбрать пропеллеры в соответствии с размером вашей рамы, и только после того, как вы решите, какие пропеллеры вы будете использовать, только тогда вы сможете выбрать свои двигатели. Пропеллеры стандартизированы, и вот самые популярные для квадроциклов:

  • 5 ступеней, 8 диаметров - малые квадратики
  • 8-шаговый, 9-й диаметр - малые квадроциклы
  • 5 ступеней, 10 диаметров - квадроциклы среднего размера
  • Шаг 7, диаметр 10 - квадроциклы среднего размера
  • 5 шагов, диаметр 12– Обеспечивают большое количество толчков и отлично подходят для квадроциклов большего размера

Поскольку аэродинамика - это больше, чем просто запутание и трудность для понимания, если вы не инженер по аэродинамике, мы объясним несколько важных терминов в нескольких словах.

Во-первых, чем больше диаметр и шаг, тем большую тягу будет производить винт. Потребуется больше мощности, но квадрокоптер сможет поднимать больший вес. Для двигателей с высокой частотой вращения вам потребуются гребные винты меньшего или среднего размера. Для двигателей с низкой частотой вращения вам понадобятся винты большего размера, чтобы они могли удерживать квадрокоптер в воздухе на более низкой скорости.

Во-вторых, чтобы достичь идеального баланса между двигателями и гребными винтами, вам сначала нужно решить, для чего вы будете использовать квадроцикл.Например, если вы хотите построить стабильный и достаточно мощный квадроцикл для подъема съемочного и фотографического оборудования, вам следует использовать двигатель с меньшими оборотами и большим крутящим моментом, а также пропеллеры с более длинным или большим шагом.

Если вам нужны винты с хорошими характеристиками, мы рекомендуем вам приобрести любой из этих:

Деталь # 4 - ESC (

Электронный регулятор скорости )

Устройство, отвечающее за управление скоростью двигателей, представляет собой дешевую плату контроллера, используемую только для двигателей.Он имеет вход для аккумулятора и выход двигателя с тремя фазами, поэтому вам понадобится четыре из них для каждого двигателя.

При покупке правильного регулятора скорости нужно обращать внимание на максимальный уровень тока, исходящего от источника. Выберите контроллер на 10А или выше.

Кроме того, вам нужно проверить, насколько он программируемый, а это означает, что вам нужно купить ESC, который позволит вам изменить диапазон частот сигнала на желаемое значение.

Когда дело доходит до ESC (электронных регуляторов скорости) , w e предлагает эти модели, которые великолепны и стабильны:

Деталь # 5 - Аккумулятор

Наиболее рекомендуемый источник питания для квадрокоптера - LiPo.Он не тяжелый, и текущие уровни идеально подходят для того, что вам нужно. NiMH - более дешевый, но и более тяжелый вариант.

Батареи

LiPo поставляются как одна ячейка 3,7 В или упакованы вместе (до 10 элементов, обеспечивающих 37 В).

Самая популярная версия среди любителей дронов известна как батарея 3SP1, которая состоит из трех ячеек и обеспечивает напряжение 11,1 В.

Вот хороший: Zippy Flightmax 5000mAh 3S1P 20C

Деталь # 6 - IMU (инерциальный измерительный блок)

Это устройство отвечает за измерение ориентации, скорости и силы тяжести квадрокоптера.Это позволяет электронике управлять мощностью, подаваемой на двигатели, чтобы регулировать скорость двигателей. Устройство оснащено 3-осевым гироскопом и 3-осевым акселерометром. Эта комбинация известна как 6DOF IMU.

Вот хороший вариант для сборки квадроцикла: KNACRO 6508 IMU MPU6050 MPU-6050 6DOF

Гироскоп предназначен для считывания значений угловой скорости, а акселерометр отвечает за измерение ускорения и силы, что означает, что он может чувствовать силу тяжести, направленную вниз.Поскольку он оснащен трехосевыми датчиками, он может определять ориентацию квадроцикла.

Деталь # 7 - Контроллер полета

Вы можете выбрать плату контроллера, единственная цель которой - управлять квадрокоптером, или вы можете выбрать Arduino UNO. Это микроконтроллер общего назначения, который позволяет вам создать собственный полетный контроллер, купив детали, которые вы хотите установить, и собрав контроллер самостоятельно.

Если вы хотите начать работу с электроникой и кодированием, Arduino UNO - лучшая плата, которую вы можете использовать.Это самая надежная и прочная платформа, которая позволяет буквально играть с ней как угодно.

Входит в состав:

  • 14 контактов цифрового входа / выхода (6 из них могут использоваться как выходы для ШИМ)
  • 6 аналоговых входов
  • кварцевый кристалл 16 МГц
  • разъем USB
  • разъем питания
  • заголовок ICSP
  • кнопка сброса

Вы можете использовать USB-кабель для подключения к компьютеру, батарее или адаптеру переменного / постоянного тока для включения.

Самое лучшее в этой доске то, что она позволяет вам возиться с ней и не беспокоиться о ее разрушении. Худшее, что вы можете с этим сделать, - это поджарить чип, который, к счастью, можно заменить всего за пару долларов.

Вы можете запрограммировать «UNO» с помощью программного обеспечения Arduino. Чтобы получить подробную информацию, которая поможет вам начать работу с полетным контроллером Arduino UNO, перейдите к последнему разделу сообщения.

Деталь # 8 - Радиоуправляемый передатчик

Самый распространенный способ программирования и управления квадрокоптером - это радиоуправляемый передатчик.Обычно вы можете выбрать один из двух режимов: акробатический или стабильный.

Для управления квадроциклом в акробатическом режиме гироскоп - единственный, который отправляет значения на обработку. В этом случае управляющие ручки предназначены только для управления и установки скорости вращения для трех осей, и если вы отпустите их, значения не будут повторно сбалансированы автоматически.

Пригодится тем, кто хочет выполнять воздушные трюки, потому что дрон можно немного наклонить, а после отпускания стиков квад сохраняет положение.Это не лучший режим для новичков, потому что управлять квадроциклом в этом режиме довольно сложно. По сути, чем больше у вас навыков в управлении дроном, тем меньше вам понадобится помощи в обеспечении стабильности.

Итак, когда вы начинающий пользователь дронов, используйте второй режим управления, потому что для определения ориентации дрона в этом режиме работает каждый датчик. Скорость мотора будет регулироваться автоматически, и дрон будет балансироваться самостоятельно.

В настоящее время доступны различные системы управления RC , такие как Futaba, Spektrum, Turnigy, FlySky и так далее.Вот несколько наших любимых:

Электромонтаж, пайка и программирование

Это самая сложная часть всего процесса строительства. Пайка - это очень специфическая техника, поэтому обязательно выполняйте этот процесс осторожно. Убедитесь, что вы точно знаете, что вам нужно делать, прежде чем начинать каждый шаг. Для этого вам понадобится:

Покупайте модуль Bluetooth только в том случае, если вы хотите получить представление о параметрах и настроить квадрокоптер через приложение, а не брать ноутбук с собой в поле во время тестирования.

Схемы

Это основной план вашей операции:

Как подключить ESC:

  • Сигнальный штифт ESC 1 - D3
  • Сигнальный штифт ESC 3 - D9
  • Сигнальный штифт ESC 2 - D10
  • Сигнальный штифт ESC 4 - D11

Как подключить модуль Bluetooth:

Как подключить MPU-6050:

Как подключить светодиодный индикатор:

Как подключить приемник:

  • Дроссель - 2
  • Элероны - D4
  • Элероны - D5
  • Руль - D6
  • ВСП.1 - D7

Вам необходимо заземлить MPU-6050, модуль Bluetooth, приемник и ESC.И для этого вам необходимо подключить все контакты GND к контакту GND Arduino.

Как спаять все вместе

Вот порядок, в котором вы должны спаять все части вместе:

Первое, что вам нужно сделать, это взять женские разъемы и припаять их к макетной плате. Здесь будет размещаться ваша плата Arduino.

Припаяйте их прямо по центру, чтобы оставалось место для остальных разъемов для MPU, модуля Bluetooth, приемника и ESC, и оставьте место для некоторых дополнительных датчиков, которые вы, возможно, решите добавить в будущем.

Следующим шагом является пайка штыревых разъемов приемника и регуляторов прямо из гнездовых разъемов Arduino. Сколько у вас будет рядов заголовков мужских ESC, зависит от того, сколько двигателей будет у вашего дрона.

В нашем случае мы строим квадрокоптер, то есть будет 4 ротора и по ESC для каждого. Это также означает, что будет 4 строки, каждая из которых будет иметь по 3 штекера.

Первый заголовок в первой строке будет использоваться для PID сигнала, второй для 5V (хотя это зависит от ваших ESC, имеющих вывод 5V или нет, в противном случае вы оставите эти заголовки пустыми), а третий Заголовок будет для GND.

По окончании пайки регуляторов скорости переходите к паяльной части разъемов приемника. В большинстве случаев у квадрокоптера 4 канала. Это газ, тангаж, рыскание и крен. Оставшийся свободный канал (пятый) используется для смены режима полета (вспомогательный канал). Это означает, что вам нужно будет припаять штекерные разъемы в 5 рядов. Все, кроме одной, будут иметь один заголовок, а только для одной из этих строк требуется 3 заголовка подряд.

Как подключить все

Ниже вы можете увидеть пример правильного подключения.Как вы можете видеть на картинке, то, о чем мы только что говорили, расположено слева (MPU припаян по центру) на плате, а слева (два женских разъема припаяны снизу) на плате - это то, как мы припаяли и подключили модуль Bluetooth. .

В нашем случае все земли были связаны с землями Arduino. Это включает в себя все заземления ESC, массу приемника (заголовок сигнала газа полностью справа), а также заземление модуля Bluetooth и MPU.

Далее вам нужно следовать схемам и соединениям, которые мы объяснили выше.Например, MPU (SDA - A4 и SCL - A5) и для Bluetooth (TX - TX и RX - RX) Arduino.

После этого просто проследите за подключениями, как мы их написали: Сигнальные контакты ESC1, ESC2… к D3, D10… Arduino. Затем пины сигнала приемника Pitch - D2, Roll - D4… и так далее.

Кроме того, вам необходимо подключить длинный вывод светодиода (положительный вывод) к выводу Arduino D8, а также добавить резистор на 330 Ом между землей Arduino и коротким выводом светодиода (отрицательный вывод).

Последнее, что нужно сделать, это подключить источник питания 5 В. И для этого вам необходимо параллельно подключить черный провод (заземление аккумулятора) к земле всех ваших компонентов, а красный провод к Arduino, MPU и модулю Bluetooth, контакты 5 В.

Теперь MPU 6050 необходимо припаять к штекерным разъемам и к тем, которые вы планируете использовать. После этого поверните плату на 180 градусов и подключите все ваши компоненты к соответствующим разъемам на макетной плате.

Вот как это должно выглядеть, когда закончена пайка и проводка:

Включите его, и ваш Arduino готов к добавлению кодов через компьютер!

Как запрограммировать полетный контроллер Arduino

Полетный контроллер Arduino также требует некоторого компьютерного программирования для работы.Теперь, когда мы закончили сборку и пайку, мы можем перейти к аспекту кодирования. В этом разделе содержится пошаговое руководство о том, что вам нужно сделать, чтобы запустить полетный контроллер Arduino.

Во-первых, вам необходимо загрузить MultiWii 2.4. Затем, когда вы его извлечете, вы получите это:

Войдите в папку MultiWii, найдите значок MultiWii и запустите его:

Используйте Arduino IDE, чтобы найти «файл Arduino» или файл Multiwii с расширением «.я нет". Любые «CPP-файл» или «H-файл» являются файлами поддержки для нашего кода Multiwii, поэтому не открывайте их. Просто используйте файл Multiwii.ino.

Когда вы открываете файл, вы найдете множество вкладок, таких как Alarms.cpp, Alarms.h, EEPROM.cpp, EEPROM.h и многие другие. Найдите «config.h»

Прокрутите вниз, пока не найдете «Тип мультикоптера», а затем, удалив «//», вы отметите это как определенное и работающее. Quad X, потому что мы предполагаем, что вы используете конфигурацию ротора «X» на вашем квадроцикле.

Теперь прокрутите вниз и найдите «Combined IMU Boards» и активируйте тип Gyro + Acc Board, который вы используете. В нашем случае мы использовали GY-521, поэтому мы активировали эту опцию.

Если вы решите добавить другие датчики, такие как барометр или ультразвуковой датчик, все, что вам нужно сделать, это «активировать» их здесь, и они будут работать.

Далее идет «Пин зуммера»:

Там нужно активировать опции индикатора полета (первые 3):

Теперь вам нужно прошить код на Arduino.

Отключите плату Arduino от полетного контроллера, а затем подключите ее к компьютеру через USB. Выйдя из FC и подключившись к компьютеру, вы найдете TOOLS и выберите тип своей платы Arduino (в нашем случае Arduino Nano).

Теперь найдите «Последовательный порт» и активируйте COM-порт, к которому подключен Arduino Nano (в нашем случае - COM3).

Наконец, щелкните стрелку и загрузите код и дождитесь передачи кода.

Когда загрузка завершена, отсоедините Arduino от USB, вставьте его обратно на свое место в плате FC и подключите батарею 5 В, чтобы весь FC был запитан, а затем подождите, пока светодиод на Arduino не загорится красным. Это означает, что загрузка завершена, и вы можете снова подключить его к компьютеру.

Теперь найдите папку Multiwii 2.4, затем MultiwiiConfig и найдите папку, совместимую с вашей ОС. В нашем случае это «application.windows64».

Теперь запустите приложение MultiwiiConf:

Когда откроется пользовательский интерфейс, вам нужно выбрать COM-порт Arduino и нажать «Пуск», как показано на изображении ниже.

И все! Вы сразу заметите, как вы перемещаете FC, значения для данных акселерометра и гироскопа отображаются на экране. Ориентация вашего FC показана внизу.

В этом интерфейсе вы можете изменить значения PID и точно настроить свой квадроцикл в соответствии с вашими личными предпочтениями.Вы также можете назначить режимы полета определенным положениям вспомогательного переключателя в этом интерфейсе.

Все, что вам нужно сделать, это найти место для вашего Arduino FC на раме, и он готов взлететь в небо.

Заключение

Самостоятельная сборка дрона может оказаться сложным и трудным процессом. Тем не менее, он также гарантированно будет сопровождаться собственными наборами наград и удовольствий. Очень легко пойти в магазин и купить готовый к полету дрон, но люди, которые создают дроны с нуля, не делают этого по этой причине.Это ощущение, которое вы испытываете в первый раз, когда управляете дроном, полностью созданным вами. На этих летательных аппаратах довольно весело летать, но есть шанс, что вы получите еще больше удовольствия еще до того, как полет начнется!

Мы надеемся, что эта статья помогла вам и дала вам лучшее представление о том, что делает каждая часть квадрокоптера. Теперь вы должны знать, как правильно выбрать запчасти для квадрокоптера. Если вам удалось собрать свой собственный квадрокоптер и все идет хорошо, вы можете прочитать другую нашу статью о том, как управлять квадрокоптером, чтобы получить больше советов.

Кроме того, вот серия видеороликов, в которых показано, как собрать все части вместе и построить квадрокоптер Arduino с нуля. Если вы визуально обучаетесь, это должно быть хорошим дополнением к этой статье, на которое вы можете ссылаться, если когда-нибудь застряли на каком-либо этапе сборки квадрокоптера:

YMFC-3D Часть 1 - Аппаратное обеспечение

YMFC-3D Часть 2 - Подключение передатчика и приемника RC

YMFC-3D Часть 3 - Как подключить гироскоп

YMFC-3D Часть 4 - Электронный регулятор скорости (ESC)

YMFC-3D Часть 5 - ПИД-регулятор квадрокоптера и настройка ПИД-регулирования

YMFC-3D Часть 6 - Контроллер полета с исходным кодом

Не стесняйтесь оставлять комментарии или отзывы об этом посте.Счастливого строительства!

Amazon и логотип Amazon являются товарными знаками Amazon.com, Inc или ее дочерних компаний. Емкость

- Как я могу определить / измерить номинальную мощность воздушного конденсатора, сделанного своими руками?

Поздравляю с вашим домашним пивоваренным проектом! Приятно видеть эксперименты такого типа.

Два основных параметра конденсатора - это рабочее напряжение и ESR (эффективное последовательное сопротивление), причем первое в данном случае представляет наибольший интерес. Какая мощность может быть приложена к цепи, содержащей конденсатор, является производной от этих параметров и других элементов схемы.

Рабочее напряжение

Рабочее напряжение конденсатора определяется в первую очередь диэлектрической прочностью материалов, из которых изготовлен конденсатор, и деталями конструкции. В вашем случае это будет в первую очередь состоять из диэлектрической прочности материала FR4, диэлектрической прочности воздуха и деталей конструкции вашего конденсатора.

Материал

FR4 обычно рассчитан на 20 кВ / мм. Таким образом, ваш материал FR4 толщиной 1 мм будет разрушаться (проводить) примерно при 20 киловольтах.Но есть некоторые предостережения, которые необходимо принять во внимание. Если вы посмотрите на обрезанную кромку FR4, плакированного медью, под увеличением, вы увидите, что часть меди сформирована таким образом, чтобы наматываться на край материала FR4. Диэлектрическая прочность этой области больше не зависит от электрической прочности FR4, а зависит от прочности воздуха. Для переменного конденсатора, даже если край меди тщательно контролируется, все равно будет существовать эффективный воздушный зазор, поскольку края ротора и статора встречаются, когда они начинают зацепляться.Края меди также создают повышенный градиент потенциала. Если плату протравить, а не разрезать, чтобы оставить периметр из материала FR4 вокруг ротора или статора, это состояние можно лучше контролировать.

Сухой воздух комнатной температуры на уровне моря имеет диэлектрическую прочность примерно 3 кВ / мм. Обратите внимание, что это примерно 1/7 от FR4. Поэтому, если ваша конструкция не контролируется тщательно, чтобы всегда обеспечивать чистый интерфейс FR4, лучше использовать значение 3 кВ / мм в качестве напряжения пробоя.

При расчете рабочего напряжения конденсатора учитывайте, что если напряжение пробоя будет достигнуто или превышено, это приведет к катастрофическому событию. Поэтому, как правило, вы должны предусмотреть как минимум 50% -ный запас прочности, чтобы учесть строительные допуски, колебания влажности и высоты и т. Д. Также учтите, что при работе с переменным / высокочастотным напряжением значения обычно выражаются как среднеквадратичные напряжения. Что касается конденсатора, вас больше интересуют пиковое напряжение. Для синусоидального напряжения:

$$ V_ {Peak} = V_ {RMS} \ sqrt {2} \ tag 1 $$

Эффективное последовательное сопротивление

ESR становится важным фактором, если через конденсатор пропускается большой ток или если ESR достаточно велико, чтобы заметно повлиять на добротность схемы.Обычно это не относится к переменным конденсаторам. Если вас интересует более сложная математика для расчета ESR, укажите это в своих комментариях, и я дополню этот ответ этими деталями.

Зависимость мощности от напряжения

Мощность, которая может подаваться в цепь, содержащую конденсатор, в значительной степени зависит от других элементов в цепи. Например, простая небольшая рамочная антенна, используемая на ВЧ-частотах с приложенной мощностью всего 100 Вт, может легко развить более 5 кВ на настроечном конденсаторе.Такая же ситуация может возникнуть в приложении антенного тюнера.

Чтобы поработать с математикой конкретной схемы, см. Этот вопрос и ответ на StackExchange.

Тестирование вашего дизайна

Если вы хотите провести неразрушающий контроль вашего конденсатора, поищите тестер hipot. Тестер hipot ограничит или отключит ток, если произойдет пробой напряжения, что позволит вам лучше определить характеристики напряжения конденсатора.

Высокоскоростной маломощный трансивер CAN

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj / ModDate (D: 202008310

+ 02'00 ') / Производитель (Acrobat Distiller 8.1.0 \ (Windows \)) / Название (NCV7341 - Высокоскоростной трансивер CAN с низким энергопотреблением) >> эндобдж 2 0 obj > эндобдж 3 0 obj > поток application / pdf
  • ON Semiconductor
  • NCV7341 - Высокоскоростной трансивер CAN с низким энергопотреблением
  • CAN-трансивер NCV7341 - это интерфейс между
  • Контроллер протокола сети (CAN)
  • и физический контроллер
  • и может использоваться в системах как на 12 В, так и на 24 В.Трансивер
  • обеспечивает возможность дифференциальной передачи на шину и дифференциал
  • возможность приема к контроллеру CAN.
  • 2009-05-13T09: 09: 53-07: 00BroadVision, Inc.2020-08-31T09: 05: 11 + 02: 002020-08-31T09: 05: 11 + 02: 00 Acrobat Distiller 8.1.0 (Windows) NCV7341 CAN-трансивер - это интерфейс между контроллер протокола сети (CAN) и физический шина и может использоваться в системах как на 12 В, так и на 24 В.Трансивер обеспечивает возможность дифференциальной передачи на шину и дифференциал возможность приема к контроллеру CAN. uuid: c0b02a26-d182-4a8b-b305-46baa4d139b8uuid: a6a3586d-eb86-4b48-acbb-8630b97b771b конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > поток HdTN @ G "| wJ-Z>

    NCN5150 - Проводной ведомый приемопередатчик M-BUS

    % PDF-1.4 % 1 0 объект > эндобдж 5 0 obj / Название (NCN5150 - Проводной ведомый приемопередатчик M-BUS) >> эндобдж 2 0 obj > эндобдж 3 0 obj > поток application / pdf

  • ON Semiconductor
  • NCN5150 - Проводной ведомый приемопередатчик M-BUS
  • NCN5150 - однокристальный интегрированный ведомый приемопередатчик для использования в ведомые устройства и повторители двухпроводной шины Meter Bus (M-BUS). В трансивер предоставляет все функции, необходимые для Европейские стандарты EN 13757-2 и EN 1434-3, описывающие Требования физического уровня для M-BUS.Включает программируемый уровень мощности до 2 (версия SOIC) или 6 (версия NQFP) единичных нагрузок, которые доступны для использования во внешних цепях через LDO 3,3 В регулятор. NCN5150 может обеспечить максимальную коммуникацию. Скорость связи M-BUS 38 400 бод (полудуплекс).
  • 2017-09-14T12: 06: 27-07: 00BroadVision, Inc.2020-10-05T09: 47: 20 + 02: 002020-10-05T09: 47: 20 + 02: 00 Acrobat Distiller 10.0.0 (Windows) uuid: 040654f7-331e-46bb-a995-a25e455b7a59uuid: 76fa766c-302a-489e-95f0-9ffda0488296Печать конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > поток HVn8Q_1 "fH" b6N) rki խ ~) YSl "pl̙3gIT

    Проектирование надежных изолированных интерфейсов данных RS-232 для тяжелых промышленных приложений

    Введение

    Ключевым требованием в приложениях для промышленных и контрольно-измерительных приборов (I&I) является надежный интерфейс данных для проверки подключенных систем через диагностический порт.Стандарт шины RS-232 - один из старейших и наиболее широко используемых конструкций шины физического уровня в приложениях I&I. Впервые представленный в 1962 году, RS-232 представляет собой стандарт несимметричной передачи данных; тем не менее, несмотря на слухи о его скорой кончине, он по-прежнему широко используется в отрасли для связи по короткому кабелю.

    Для обеспечения надежного канала передачи данных в суровых промышленных условиях диагностический порт RS-232 должен обеспечивать изолированный интерфейс между кабельной сетью RS-232 и подключенными системами для защиты от скачков напряжения и контуров заземления в шумной среде и улучшения системы. надежность (рисунок 1).Изоляция по питанию канала связи RS-232 достигается за счет использования изолированного источника постоянного тока в постоянный ток или технологии интегрированного преобразователя постоянного тока в постоянный ток компании Analog Devices, Inc., iso Power ® . Изоляция сигналов канала связи RS-232 реализована с помощью оптопар или технологии Analog Devices iCoupler ® .

    Рисунок 1. Типичный изолированный канал связи RS-232.

    Как показано на рисунке 2, изолирующий барьер гальванически изолирует шину RS-232 от каждой подключенной к ней системы, позволяя цифровым данным перемещаться между двумя точками, но предотвращая прохождение токов контура заземления; это уменьшает искажение сигнала и ошибки за счет устранения шума, который попадает на кабель связи.

    Рисунок 2. Изоляционная функция.

    Реализация изолированного интерфейса RS-232

    Для обеспечения изолированного интерфейса связи RS-232 устройства на обоих концах должны быть изолированы от соединяющего их кабеля RS-232. Чтобы изолировать канал передачи данных , должны быть изолированы как сигнальные линии данных, так и мощность, необходимая для управления кабелем. Данные, поступающие от UART на диагностический порт, должны пересечь изолирующий барьер на приемопередатчик RS-232 на стороне изолированной шины.Локальный источник питания 5 В / 3,3 В также должен пересекать изолирующий барьер для питания приемопередатчика RS-232 на стороне изолированной шины. Это также должно происходить на стороне промышленного ПК: и данные, и питание должны преодолевать изолирующий барьер (рисунок 3).

    Изолируя оба устройства от кабельной сети RS-232, как диагностический порт, так и схемы промышленного ПК защищены от переходных процессов, которые могут попасть на кабель RS-232 в суровых условиях. Контуры заземления, которые могут возникнуть из-за разных потенциалов заземления на диагностическом порте и на стороне промышленного ПК, прерываются изоляцией.Высокие синфазные напряжения, которые могут появиться на шине RS-232, не допускаются через изолирующий барьер, защищая людей, пользующихся изолированными данными.

    Рисунок 3. Изолированный интерфейс RS-232.

    Технология изоляции: данные и мощность

    На рисунке 4 сравниваются две основные технологии изоляции. Технология iCoupler, рисунок 4 (a), обеспечивает изоляцию сигналов в системе RS-232 с использованием методов обработки толстых пленок для создания микромасштабных встроенных трансформаторов, обеспечивающих изоляцию 2,5 кВ.В более старом, но широко используемом решении оптрона , рис. 4 (b), используются светодиоды (светодиоды) и фотодиоды. Светодиоды преобразуют электрические сигналы в свет, а фотодетекторы преобразуют свет обратно в электрические сигналы. Собственно низкая эффективность преобразования электричества в свет приводит к относительно высокому энергопотреблению, медленный отклик фотодетекторов ограничивает их скорость, а старение ограничивает их срок службы.

    Изготовление трансформаторов непосредственно на кристалле с использованием обработки на уровне пластин позволяет без затрат интегрировать каналы iCoupler друг с другом и с другими полупроводниковыми функциями.Примером этого является ADM3252E, изолированный двухканальный приемопередатчик RS-232 в одном компактном устройстве. Изоляция iCoupler преодолевает ограничения, налагаемые старым решением оптопары, по крайней мере, пятью способами: интеграция - что снижает общий размер решения и стоимость системы за счет двунаправленной работы iCoupler - более высокая производительность , более низкое энергопотребление , простота использования , и выше надежность .

    Рисунок 4. Сравнение технологий изоляции.

    До недавнего времени для передачи мощности через изолирующий барьер требовался либо отдельный преобразователь постоянного тока в постоянный, который был относительно большим, дорогим и с недостаточной изоляцией, либо индивидуальный дискретный подход, который был громоздким и сложным в разработке. Эти подходы были единственными жизнеспособными альтернативами, даже в таких приложениях, как изолированный обмен данными RS-232, где требуется лишь небольшое количество изолированного питания.

    Для решения этой проблемы компания Analog Devices разработала и изготовила полное, полностью интегрированное решение, сочетающее передачу сигнала и мощности через изолирующий барьер с использованием микротрансформаторов.Это расширение нашей хорошо зарекомендовавшей себя технологии iCoupler, получившее название iso Power, является революционной альтернативой. Изоляция сигнала и мощности в одном компоненте - хорошее напряжение до 2,5 кВ - устраняет необходимость в изолированном источнике питания, который является громоздким, дорогим и сложным в проектировании. Это может значительно сократить пространство на плате, время разработки и общую стоимость системы изоляции для типичного изолированного интерфейса RS-232. В следующих разделах описаны две типичные ситуации проектирования RS-232, в которых применима эта технология.

    Изолированный, высокоскоростной двухканальный интерфейс RS-232

    На рис. 5 показано сравнение устаревшего решения, использующего дискретные компоненты, с полностью интегрированным решением.

    Рисунок 5. Сравнение изолированных конструкций RS-232.

    Традиционный способ реализации полностью изолированного 2-канального интерфейса RS-232, рис. 5 (a), заключается в использовании оптопар для обеспечения изоляции данных канала RS-232. Для каждой линии данных (TIN1, TIN2, ROUT1, ROUT2) требуется одна оптопара, а также внешний буфер для каждой линии.Изолированный источник питания использует микросхему драйвера трансформатора для управления дискретным трансформатором, а также простую схему выпрямления и LDO (стабилизатор с малым падением напряжения) для очистки изолированной шины 5 В или 3,3 В ISO V CC . Для реализации этой конструкции требуются восемь микросхем и ряд пассивных компонентов, а также значительное пространство на плате.

    В однокристальном решении, рис. 5 (b), полностью изолированный (2,5 кВ) двухканальный интерфейс RS-232 для всех четырех сигналов может быть реализован с помощью всего одной микросхемы (ADM3252E), а также двух развязывающих конденсаторов и четырех конденсаторы-накачки.

    ADM3252E (рис. 6) сочетает в себе стандартный приемопередатчик RS-232 с 4-канальным iCoupler, обеспечивая изоляцию сигналов данных RS-232. Он также объединяет технологию iso Power для обеспечения изоляции питания на кристалле. Интеграция приемопередатчика RS-232 путем сочетания iCoupler и iso технологий изоляции питания позволяет ADM3252E обеспечивать полностью изолированный интерфейс RS-232 с изоляцией среднеквадратичного значения 2,5 кВ в одном корпусе (12 мм × 12 мм), для чего требуется всего шесть внешних устройств. конденсаторы.

    Рисунок 6. Изолированный двухканальный приемопередатчик RS-232 ADM3252E.

    Это однокристальное решение значительно сокращает время разработки и пространство на плате, необходимые для изолированного интерфейса RS-232. Повышается надежность и снижается стоимость благодаря значительно меньшему количеству компонентов, размещаемых на печатной плате, что снижает производственные затраты и повышает надежность. Кроме того, ADM3252E можно использовать в приложениях с напряжением 5 В или 3,3 В без каких-либо изменений, избегая изменений конструкции, которые были бы необходимы при дискретной конструкции.

    Технология iso Power обеспечивает изоляцию питания 2,5 кВ непосредственно на кристалле в корпусе 44-BGA, устраняя необходимость в дорогостоящем дискретном трансформаторе, используемом в традиционном решении. Кроме того, технология iCoupler обеспечивает изоляцию сигнала (данных), устраняя необходимость в четырех дискретных каналах оптопары.

    Защита от электростатического разряда

    Поскольку кабель RS-232 физически подключается и отключается пользователем, защита от электростатического разряда (, электростатический разряд, ) контактов передачи (Tx) и приема (Rx) RS-232 (TxD1, TxD2, RxD1, RxD2) очень эффективна. важно, чтобы обеспечить устойчивый и надежный интерфейс.ADM3252E имеет защиту от электростатического разряда согласно IEC 1000-4-2 (801.2) на выводах RINx и TOUTx следующим образом:

    • Контактный разряд: ± 8 кВ
    • Разряд воздушного зазора: ± 15 кВ

    Защита от переходных процессов

    Чтобы изолированный приемопередатчик RS-232 мог работать в очень жестких условиях эксплуатации в промышленных приложениях, технологии изоляции (iCoupler и iso Power) имеют высокую (> 25 кВ / мкс) устойчивость к синфазным переходным процессам, которая представляет собой максимальную скорость нарастания синфазного напряжения (разность потенциалов между логической схемой и стороной шины), которая может поддерживаться при сохранении соответствия спецификации.Амплитуда переходного процесса - это диапазон, в котором изменяется синфазное напряжение. Скорость нарастания синфазного напряжения применяется как к нарастающим, так и к спадающим синфазным фронтам. Эта спецификация гарантирует, что любые переходные процессы, которые передаются по кабелю RS-232 в суровых условиях, не могут повредить приемопередатчик RS-232 или вызвать передачу ошибочных данных, тем самым обеспечивая канал передачи данных с очень высокой надежностью.

    Изоляционная защита 2,5 кВ и сертификаты

    Изолированные трансиверы соответствуют 2.Изоляция 5 кВ между логической и шинной стороной устройства. Этот уровень изоляции гарантирует, что ток не может протекать через логическую сторону кабеля RS-232 или выходить из нее. Это также гарантирует, что никакие напряжения или переходные процессы, передаваемые по кабелю RS-232, не попадут на логическую сторону. Изоляционная защита 2,5 кВ также означает, что пользователи на логической стороне защищены от высоких напряжений или переходных процессов, которые могут возникнуть в кабеле RS-232. Ожидается одобрение класса изоляции 2,5 кВ для ADM3252E в следующих агентствах: Underwriters Laboratories (UL), Verband Deutscher Elektrotechniker (VDE) и Canadian Standards Association (CSA).Сертификат UL 1577 требует, чтобы изолирующий барьер всех устройств ADM3252E (как и оптопары) прошел 100% производственные испытания:

    ADM3252E Технические характеристики

    2-канальный, высокоскоростной, полностью изолированный (данные и питание) приемопередатчик RS-232 ADM3252E идеально подходит для работы в электрически жестких условиях или там, где кабели RS-232 часто подключаются и отключаются. Он объединяет четыре независимых канала цифровой развязки iCoupler (два для передачи, два приема) и преобразователь постоянного тока в постоянный ток с масштабированием микросхемы iso Power.Изоляция среднеквадратичного значения 5 кВ, невосприимчивость к переходным процессам 25 кВ / мкс и защита от электростатического разряда ± 15 кВ. Обмениваясь данными со скоростью до 460 кбит / с, он соответствует спецификациям TIA / EIA-232E. Удвоитель напряжения и инвертор на кристалле позволяют работать с однополярным питанием. Работая от одного источника питания от 3,0 до 5,5 В, ADM3252E потребляет 20 мА без нагрузки. Доступный в корпусе CSP BGA с размерами 12 мм × 12 мм, 44 шарика, он работает в диапазоне температур от –40 ° C до + 85 ° C и стоит 8,49 доллара за 1000 штук.

    Схема расположения печатной платы

    Компоновка печатной платы изолированного трансивера критически важна для обеспечения соответствия указанным требованиям 2.В реальной конструкции достигается изоляция 5 кВ. Основными соображениями являются путь утечки (кратчайшее расстояние по поверхности между двумя проводниками) и зазор (кратчайшее расстояние по воздуху) между GND логической стороны и GND стороны шины. ADM3252E не требует внешних схем для своих логических интерфейсов. Шунтирование источника питания требуется на входных и выходных контактах питания (рисунок 7). Дополнительную информацию о рекомендациях по компоновке и конструкции печатных плат для контроля излучаемых излучений (EMI) можно найти в Примечаниях по применению AN-0971, Рекомендациях по контролю излучаемых выбросов с помощью устройств isoPower .

    Рис. 7. Рекомендуемая ADM3252E компоновка печатной платы.

    Изолированный высокоскоростной одноканальный интерфейс RS-232

    Для приложений приемопередатчиков, требующих только одноканального (1 Tx, 1 Rx), 5-вольтового изолированного интерфейса RS-232, ADM3251E представляет собой однокристальное решение в 20-выводном широком корпусе SOIC. Приемопередатчик ADM3251E включает технологии изоляции питания iCoupler и iso ; это был первый приемопередатчик RS-232 для поверхностного монтажа, который обладал полной изоляцией как линий передачи данных, так и питания.Обладая классом изоляции 2,5 кВ, он соответствует требованиям к изоляции промышленного стандарта (UL1577 и DIN VDE 0884-10). Это гарантирует, что он будет соответствовать уровням надежности, требуемым в шумных операционных средах, таких как изолированные порты диагностических данных RS-232 в приложениях промышленной автоматизации и управления. Пакет SMT уменьшает пространство на плате на 45% по сравнению с традиционными ИС - и помогает ускорить производственный процесс и снизить затраты на разработку системы (рисунок 8).

    Рисунок 8. Применение одноканального приемопередатчика RS232.(а) Технические характеристики ADM3251E. (б) унаследованный подход. (c) i Ответвитель + iso Подвод мощности.

    Заключение

    Современные интерфейсы RS-232 в промышленных и измерительных приложениях должны быть небольшими, прочными и недорогими, а также изолированными. Интегрируя изоляцию трансформатора в масштабе микросхемы со стандартным приемопередатчиком интерфейса RS-232, можно сделать доступными однокристальные, полностью изолированные приемопередатчики RS-232 (включая изолированное питание), чтобы обеспечить эти преимущества.Двухканальный ADM3252E и одноканальный ADM3251E значительно сокращают время разработки и обеспечивают компактное, надежное, недорогое и высокопроизводительное решение для этих требовательных приложений.

    Я приглашаю вас прокомментировать изолированные интерфейсы RS-232 в сообществе Analog Dialogue на EngineerZone.

    Простой ламповый приемник. Ламповый регенеративный детектор диапазона FM. Краткие технические характеристики

    Схема простого QSE-приемника наблюдателя для любого радиолюбительского диапазона

    Доброго времени суток Уважаемые радиолюбители!
    Приветствую Вас на сайте ""

    Сегодня мы рассмотрим очень простую, и в то же время обеспечивающую хорошие характеристики схемы - KV Observer Receiver - коротковолновый .
    Схема разработана С. Андреевым. Не могу не отметить, что сколько бы я ни встречал в любительской литературе разработок этого автора, все они были оригинальными, простыми, с отличными характеристиками, а главное - доступны для повторения начинающим радиолюбителям.
    Первый шаг радиолюбителя в стихии обычно всегда начинается с наблюдения за работой других радиолюбителей в эфире. Немного знать теорию любительской радиосвязи. Только слушая любительский эфир, восхищаясь азами и принципами радиосвязи, радиолюбитель может получить практические навыки ведения любительской радиосвязи.Эта схема как раз предназначена для тех, кто хочет сделать первые шаги в любительском общении.

    Представлена ​​схема радиолюбительского приемника - коротковолновый очень простой, выполненный на максимально доступной элементной базе, простой в настройке и в то же время обеспечивающий хорошие характеристики. Естественно, что в силу своей простоты эта схема не обладает «потрясающими» возможностями, но (например, чувствительность приемника около 8 мкВ) позволит начинающему радиолюбителю с комфортом изучить принципы радиосвязи, особенно в 160 диапазон метров:

    Ресивер в принципе может работать в любом любительском диапазоне - все зависит от параметров входа и контуров гетеродина.Автор этой схемы испытывал приемник только на диапазоны 160, 80 и 40 метров.
    Какой диапазон лучше собрать этот ресивер. Чтобы определить это, необходимо учитывать, в каком районе вы живете, и исходить из характеристик любительских диапазонов.
    ()

    Ресивер построен по схеме прямого преобразования. Принимает телеграфные и телефонные любительские станции - CW и SSB.

    Антенна. Приемник работает на несогласованной антенне в виде отрезка монтажного провода, который можно протянуть под потолком комнаты по диагонали.Для земли подойдет труба водопровода или системы отопления дома, которая подключается к клемме х4. Уменьшение антенны подключаем к выводу Х1.

    Принцип работы. Входной сигнал выделяется схемой L1-C1, которая настроена на середину принимаемого диапазона. Затем сигнал поступает в смеситель, выполненный на 2-х транзисторах VT1 и VT2, в диодное включение, включенное по встречно-параллельной схеме.
    Напряжение гетеродина, выполненного на транзисторе VT5, подается на смеситель через конденсатор С2.Gometerodine работает на частоте, в два раза меньшей входной частоты. На выходе смесителя в точке подключения С2 формируется продукт преобразования - сигнал разности входных частот и удвоенной частоты гетеродина. Поскольку величина этого сигнала не должна быть больше трех килогерц (в диапазоне до 3 килогерц закладывается "человеческий голос"), то после смесителя на дросселе L2 и конденсаторе С3 включается ФНХ. подавляющий сигнал частотой выше 3 килогерц, за счет чего достигается высокая избирательность приемника и возможность приема CW и SSB.При этом сигналы AM и FM практически не принимаются, но это не очень важно, потому что радиолюбители в основном используют CW и SSB.
    Выделенный LB-сигнал поступает в двойной усилитель низкой частоты на транзисторах VT3 и VT4, на выходе которого высокопрочные электромагнитные телефоны типа Тон-2. Если у вас только низкоуровневые телефоны, их можно подключить через трансформатор-трансформатор, например, по радио. Кроме того, если параллельно С7 включить резистор на 1-2 кОм, то сигнал с коллектора VT4 через конденсатор емкостью 0.1-10 мкФ можно подать на вход любого УНГ.
    Напряжение питания стабилизировано стабилизатором VD1.

    Подробнее. В приемнике можно использовать конденсаторы разных переменных: 10-495, 5-240, 7-180 пикофарад, желательно с воздушным диэлектриком, но с твердым.
    Для намотки контурных катушек (L1 и L3) используются рамки диаметром 8 мм с резьбовыми подрезными сердечниками из карбонильного железа (рамки от укладки средства старых ламп или лампово-полупроводниковых телевизоров).Каркасы в разобранном виде, из них выпиливается цилиндрическая часть длиной 30 мм. Рамки устанавливаются в проемы доски и фиксируются эпоксидным клеем. Катушка L2 намотана на ферритовом кольце диаметром 10-20 мм и содержит 200 витков провода ПЭВ-0,12, намотанных, но равномерно. Катушку L2 также можно нанести на сердечник Sat, а затем поместить внутрь броневых стаканов SB, приклеивая их эпоксидным клеем.
    Схематическое изображение крепления катушек L1, L2 и L3 на плате:

    Конденсаторы C1, C8, C9, C11, C12, C13 должны быть керамическими, трубчатыми или дисковыми.
    Данные обмотки катушек L1 и L3 (провод PEV 0,12) Емкости конденсаторов C1, C8 и C9 для различных диапазонов и используемых переменных конденсаторов:

    Печатная плата изготовлена ​​из фольгированного стеклопластика. Расположение печатных треков - с одной стороны:

    Учреждение. Усилитель приемника НЧ с исправными деталями и безошибочной установкой не требует установки, так как режимы работы транзисторов VT3 и VT4 устанавливаются автоматически.
    Основная настройка ресивера - это настройка гетеродина.
    Для начала нужно проверить наличие генерации на наличие скачков напряжения на снятии катушек L3. Токосъемник VT5 должен быть в пределах 1,5-3 мА (установлен резистор R4). Наличие генерации можно проверить, изменив этот ток при прикосновении руками к контуру гетеродина.
    Установка контура гетеродина Необходимо обеспечить желаемое перекрытие гетеродина по частоте, частоту гетеродина перестроить в диапазонах:
    - 160 метров - 0.9-0,99 МГц
    - 80 метров - 1,7-1,85 МГц
    - 40 метров - 3,5-3,6 МГц
    Проще всего это сделать, измерив частоту при удалении катушек L3 с помощью частотомера, способного измерять частоту вверх до 4 МГц. Но можно использовать резонансную волну или генератор GF (метод биений).
    Если вы используете ВЧ-генератор, вы можете одновременно настроить входную цепь. Подайте сигнал GWC на ​​вход приемника (поместите провод, подключенный к x1, рядом с выходным кабелем генератора).ВЧ-генератор необходимо перестраивать на частотах, в два раза превышающих указанные выше (например, на диапазоне 160 метров - 1,8-1,98 МГц), а контур гетеродина корректировать таким образом, чтобы при соответствующем положении Конденсатор С10 в телефонах, звук частоты слушал 0,5-1 кГц. Затем настройте генератор на середину диапазона, настройте на него приемник и настройте цепь L1-C1 на максимальную чувствительность приемника. Также генератор может откалибровать шкалу приемника.
    При отсутствии ВЧ-генератора входную цепь можно настроить, взяв радиолюбительскую станцию, работающую как можно ближе к середине диапазона.
    В процессе корректировки контуров может потребоваться регулировка количества витков катушек L1 и L3. Конденсаторы С1, С9.

    Тема ретро-ресиверов, в частности регенерирующих, всесторонне и очень плодотворно развивалась на многих сайтах и ​​в свое время очень меня заинтересовала. В результате возникла мысль сделать простой, но многополосный, однополосный регенератор, который можно было бы превратить в несложный, но также многодиапазонный супергетеродин, но с применением минимума недефицитных деталей. .

    Предлагаю вашему вниманию очень простую и отлично работающую по схеме КВ пароваренного регенеративного приемника на двойном триоде 6Н2П.

    Принципиальная схема показана на фиг.1. Я протестировал несколько вариантов простого однополосного регенератора и представил здесь, на мой взгляд, лучший по многим критериям и достойный повторения.
    Чудесная простота и изящество положено в основу конструкции В.Горова «Простой коротковолновый приемник» (Радио, 1950, вып.3). После тестирования этого приемника его схема была немного модифицирована
    - OOS на второй ступени и улучшена на первой (собственно регенератор). Это стало возможным благодаря использованию специфической особенности триода - относительно большой магнитной проницаемости или, если хотите, значительного влияния анодной нагрузки на сетку-катод, поэтому анодные резисторы большого сопротивления создают достаточно большие «внутренние» ООС. , эквивалентное сопротивлению катода = Ra / U, в нашем случае составляет 47ком / 100 = 470 Ом, что обеспечивает высокую стабильность выбранного режима.Вторая «функция» смещения катода в УНГ состоит в том, чтобы сместить рабочую точку на линейном участке Вау так, чтобы не было ограничений - тоже не актуально, т.к. у нашего регенератора сигнал на входе УНГ очень мал (не более десятка МВ).
    - Реморану высокое напряжение от наушников (как-то срочно осознаю, что на голову подается 200В).
    - Переходные и блокирующие контейнеры теперь выполняются соединениями однополосных FNH и PVCh и выбираются так, чтобы обеспечить полосу около 300-3000 Гц.
    - Двухступенчатый аттенюатор позволил не только обеспечить нормальную работу приемника с любыми, в т.ч. Полноразмерная, антенна, но также обеспечивала очень мягкий подход к регенерации (в оригинале она была жесткой, что не позволяло реализовать высокую чувствительность).
    В итоге приемник имеет высокую стабильность (он держит станцию ​​SSB полчаса / час в двадцать, а группу станций я слушал без какой-либо настройки более 5 часов!) И чувствительность (около несколько МКВ - как точнее измерить не придумали - привет!), хорошая повторяемость (благодаря EOS его параметры мало зависят от разброса характеристик ламп) и очень простое управление - с большой перестройкой по частоте или после переключения диапазонов аттенюатор ставим в среднее положение, потенциометром R3 добиваемся старта генерации (легкое нажатие на телефоны) И все то, как правило, я использую только две ручки - настройки (кП) а аттенюатор - при включенном включении, это фактически универсальный стабилизатор - одновременно регулирует как порог ослабления, так и порог генерации.
    Конструктивные особенности Видно на фото.

    В качестве экранированного корпуса использован корпус от старого компьютерного БП. Как видно, на шасси заранее было предусмотрено место под второй фонарь. Питание стабилизировано. Электромагнитные наушники, обязательно высокопрочные (с катушками электромагнита с индуктивностью примерно 0,5HN и сопротивлением 1500 ... 2200 Ом), например, tone-1, tone-2, tone-2m, ta-4, Ta. -56м. КПа лучше применять с воздушным диэлектриком.В зависимости от пределов изменения ее емкости и индуктивности вашей катушки для получения требуемых диапазонов растягивающих конденсаторов, вероятно, потребуется пересчитать с помощью простой программы Kontur3c_ver. пользователя US5MSQ. . Чтобы исключить шорох и потрескивание, обе секции КПУ включены последовательно, а ротор вместе с кожухом необходимо изолировать от шасси (своеобразный диф). Для не очень высоких частот с изоляцией КПУ можно и не заморачиваться, а по сути это сделать очень просто - на изготовление кронштейна из Гетинакса ушло полчаса - со всеми курильщиками (Привет! ).

    Несмотря на то, что в принципе регенератор может работать (т.е. полностью регенерировать контур) практически с любой катушкой, желательно, чтобы катушка индуктивности обладала максимально возможными конструктивными качествами - это позволит получить такие же результаты. применить меньшее включение лампы в контур, и, соответственно, оно уменьшается за счет дестабилизирующего воздействия (как собственного, так и косвенно через него по всей остальной схеме и источникам питания). Поэтому катушку большого диаметра лучше наматывать на каркас или, что еще лучше, на амидоновое кольцо (например, Т50-6, Т50-2, Т68-6, Т68-2 и т. Д.)).
    Количество витков для получения этой индуктивности можно рассчитать по любой программе, например программа удобна для обычных рам. КАТУШКА 32. , а для колец амидон - MINI RING CORE CALCULATOR . Место запуска разряда можно принимать от 1/5 ... 1/8 (для обычных рамок) до 1/10 ... 1/2 (для амидона) числа витков контурной катушки.

    По поводу замены возможной лампы. В этой схеме большее значение имеет коэффициент усиления "MJ", ну и небольшое потребление тока 6N2P тоже приятно - на цепь анодного питания можно поставить эффективный RC-фильтр без громоздких дросселей или электронных фильтров / стабилизаторов - просто так сделал меня и без фона в наушниках.Поэтому лучшей заменой будет 6N9C. Впрочем, любые двойные триоды (6П1П, 6х4П и др.) Могут применяться без корректировок схемы и почти без ущерба (будет чуть меньше (в 2 раза) усиления по NF). С другой стороны, при большем анодном токе и крутизне в лампу можно вместо высокопрочных наушников поставить выходной трансформатор и применить более доступные современные маломощные с большой чувствительностью.
    Насчет мощности регенератора. Вопрос, нужно ли стабилизировать питающие напряжения (затяжной и анодный) лампового регенератора, часто возникает в разных ветвях по форме образований и ответы часто дают самые спорные - из ничего не нужно стабилизировать и выпрямлять (и так мол все работает нормально) до обязательного использования полностью автономного, аккумуляторного питания.
    И как это не удивительно, но утверждения и прочие (!) Верны, важно только запомнить основные критерии (или, если угодно, требования), которые предъявляются регенератору и тем и другим авторам. Если главное простота конструкции, то зачем заморачиваться со стабилизацией мощности? Регенераторы 20-50-х годов (а это сотни (!) Разных конструкций), выполненные по этому принципу, отлично работали и обеспечивали вполне приличный прием, особенно на диапазонах вещания.Но как только мы поместим чувствительность в главу, и известно, что она достигает максимума на пороге генерации - крайне нестабильной точке, на которой многочисленные внешние изменения параметров и колебания питающего напряжения являются одними из самых значительных, Тогда ответ очевиден: если вы хотите получить высокие результаты - напряжения питания необходимо стабилизировать.

    Схема простого двухкаскадного супердетеродина показана на рис. 2. Это четырехдиапазонный приемник, а на 80м - прямое усиление (Pentododod VL1.2 работает как развязывающий УВЧ). А с другой - супергетеродин с кварцевым гетеродином и переменной IF. Гометродин, сделанный на триоде VL1.1 и стабилизированный только одним недефицитным кварцем 10,7 МГц, работает на 40 м и 20 м на основной гармонике кварца и на 10 м диапазоне на третьей гармонике 32,1 МГц. Масштаб Механическая ширина 500 кГц на диапазонах 80 и 20 м - кадр, а 40 и 10 - реверс (как используется в UW3DI). Для обеспечения диапазонов частот, указанных на схеме, диапазон регенеративного регенеративного приемника, выполняющего роль тракта интегрирования, регенеративного детектора и УНГ, выбран равным 3.3-3,8 МГц.
    При допуске в телеграфном (автодийном) режиме чувствительность (при С / шум = 10ДБ) получилась около 1 мкВ (10м), 0,7 (на 20 и 40м) и 3 мкВ (80м).
    PDF представляет собой двустишечный, спроектированный по упрощенной схеме (только на двух катушках) So, что обеспечивает максимальную чувствительность на 10 м, а на 80 м - повышенное демпфирование, которое уменьшается и немного увеличивается избыточность на этом диапазоне. Эти катушки даны там же на понятии. Монтаж навесной, хорошо виден на фото.Требования к нему стандартные - максимально жесткое крепление и минимальная длина ВЧ-проводника.


    Настройка тоже довольно простая и стандартная. После проверки правильности установки и режимов dC переключаемся на диапазон 80м и согласно описанному выше методу настраиваем регенеративный приемник. Для прокладки его частотного диапазона подключим ГСС через сепараторную емкость напрямую к сети (вывод 2) VL1.2. Затем, чтобы настроить диапазон PDF 80 м, для которого мы переключаем GSS на антенный вход, установите среднюю частоту диапазона 3.На нем 65 МГц. Переводим регенератор в режим генерации (Autodynaya mode) и настраивая КПЭ, находим сигнал ГСС. Сердечники катушек настраивают PDF на максимальный сигнал. На этом настройка диапазона 80 м закончена и сердечники катушек больше не соприкасаются. Далее проверяем работу гетероудина. Подключив к катоду (вывод 7) VL1.2 для контроля уровня напряжения гетеродинного лампового вольтметра переменного тока (если нет промышленного, можно применить простейший диодный пробник, как описанный Б) или осциллограф с полосой пропускания не менее 30 МГц с малобюджетным делителем (верхний пробник) В крайнем случае подключайте его через малую (3-5 пф) емкость.
    Переключение на диапазоны 40 и 20 м. Проверка уровня переменного напряжения около 1-2 WFF. Затем включаем диапазон 10м и регулировкой С1 добиваемся максимального напряжения генерации - оно должно быть примерно на таком же уровне.
    Затем продолжаем настройку PDF, начиная с диапазона 10 м, для которого мы переключаем GSS на антенный вход, выставляем на нем среднюю частоту диапазона 28,55 МГц. Переводим регенератор в режим генерации (Autodynaya mode) и настраивая КПЭ, находим сигнал ГСС.А подстроечниками С8, С19 (жилы катушек не трогать!) Настраивают PDF на максимальный сигнал. Аналогично настраиваем диапазоны 20 и 40 м, для которых соответственно средняя частота диапазонов будет 14,175 и 7,1 МГц, и триммеры регулировки C7, C15 и C6, C13.
    Для громкоговорящего приема ресивер может быть укомплектован усилителем мощности, выполненным по типовым схемам на лампах 6П14П, 6Ф3П. 6Ф5П. Некоторые коллеги по изготовлению этого ресивера проявили навыки настройки.
    Полностью сделанный и красивый ресивер в исполнении Пола (Ник Паша Мегавольт ) - Смотри фото.

    А есть приемник с рисунком печатной платы в исполнении LZ2XL, LZ3NF. .
    Вы часто задаете вопрос о подключении к этому приемнику цифровых весов. Я бы не стал вводить туда цифровую шкалу - во-первых, механическая шкала достаточно простая, калибровка стабильная, достаточно провести только на одном 80м диапазоне, а на другом разметка рисуется с простым пересчетом измеренного выдающегося генератора частота.А во-вторых, сама цифровая шкала при неудачном раскладе может стать источником помех, т.е. надо будет хорошо посмотреть конструкцию и, вероятно, ввести экранирование хотя бы катушки регенератора (чувствительность это единица МКВ!) и, возможно, сама шкала.
    Если все-таки ввести, то сделай так лучше
    - Генератор Gometerodine через повторитель основателя на КП303 (КП302,307 или импортный BF245, J310 и т.д.) затвор через резистор 1 ком прямо на выход 7 VL1
    - регенератор в зависимости от настройки PHA может иметь очень небольшое напряжение в цепи (десятки мВ), поэтому для сигнала регенератора потребуется не только отключение, но и усиление.Лучше всего это сделать на двухцепочечном типе КП327 или импортном (BF9xx), включенном в штатную схему (сдвинуть затвор на 2М, чтобы сделать + 4В) и нагруженном резистором 1 ком в наличии. Первую шторку через открывающий резистор 1к подключить к выводу 3 VL2.

    П.С. Спустя пару лет после изготовления вынул эти две олимпийские суперполки с дальней полки, заткнул пыль и включил - работает, да так приятно, что за два вечера ненавязчивых наблюдений на каждом из нижних диапазонов (80 и 40м) приняты сигналы со всех 10 районов бывшего СССР.
    Конечно, dd и селективность на соседе низкие, но в первом случае есть плавный аттенюатор, а во втором - сужение полосы пропускания (ручка регенерации), более кардинальное - переход на менее интенсивную частоту (Привет!), И тем не менее, даже на переполненных диапазонах диапазонов можно хотя бы взять основную информацию. Но главное его достоинство (за исключением простоты конструкции) - очень хорошая стабильность частоты, можно слушать станции без настройки по часам, и это равно успеху не только на нижнем, но и на 10м диапазоне!
    Перенесена чувствительность - при C / noise = 10DB соответствует вышеперечисленному, и если вы получите уровень выходного сигнала 50мБ (на наушниках тона-2 уже есть достаточно длинный сигнал), но оказалось так

    Самодельные QV приемники (коротковолновые) изготавливаются на основе резисторных ключей.Многие модификации включают в себя проводной переходник и оснащены усилителями. Стандартная схема имеет увеличенные стабилизаторы частоты. Для настройки каналов используются регуляторы с накладкой.

    Следует также отметить, что приемники различаются между проводимостью и частотой Tetrod. Чтобы подробно разобраться в этом вопросе, необходимо рассмотреть схемы наиболее популярных приемников.

    Низкочастотные устройства

    В схему самодельного компонентного приемника входит управляемый модулятор, а также набор конденсаторов.Резисторы для устройства подбираются по 4 ПФ. Многие модели имеют контактные триоды, которые работают от преобразователей. Также следует отметить, что схема приемника включает только однополюсные трансиверы.

    Регуляторы используются для настройки каналов, которые устанавливаются в начале цепочки. Некоторые модели производятся только с одним переходником, а разъем выбирается линейного типа. Если рассматривать простые модели, то в них используется сеточный усилитель. Работает на частоте 400 МГц. Изоляторы устанавливаются за модуляторами.

    Модели высокочастотных ламп

    Самодельные лампы Высокочастотные приемники включают в себя контактные преобразователи и датчики низкой проводимости. Некоторые специалисты положительно отзываются об этих устройствах. В первую очередь отмечают возможность подключения трансиверов. Спусковые механизмы под модификации подходят управляемого типа. Чаще всего встречаются устройства с полупроводниковыми резисторами.

    Если рассматривать стандартную схему, то компаратор имеет регулируемый тип. На выходе устанавливаются резисторы емкостью не менее 3-х.4 пф. Электропроводность не опускается ниже отметки 5 мк. Регуляторы устанавливаются на три или четыре канала. В большинстве приемников используется только один фазовый фильтр.

    Импульсные модификации

    Импульсный самодельный кВ приемник на любительские диапазоны способен работать на частоте 300 МГц. Большинство моделей складываются с помощью контактных стабилизаторов. В некоторых случаях используются трансиверы. Повышение чувствительности зависит от проводимости резисторов. На выходе 3 ПФ.

    Электропроводность контакторов в среднем составляет 6 мк.Большинство приемников производятся с дипольными адаптерами, которые подходят для разъемов PR. Очень часто встречаются конденсаторные блоки, работающие от тиристоров. Если рассматривать модели на лампах, важно отметить, что в них используются однопроходные компараторы. Включены они только на частоте 300 МГц. Также следует сказать, что есть модели с триодами.

    Однополюсные аппараты

    Легко конфигурируется точно однополюсный самодельный ламповый РВ-приемник. Своими руками модель собрана с помощью компараторов переменных.Большинство модификаций оснащено стабилизаторами низкой проводимости. Стандарт предполагает использование дипольных резисторов, у которых емкость на выходе составляет 4,5 ПФ. Электропроводность может достигать 50 мкм.

    Если самостоятельно собирать модификацию, то компаратор надо собирать с трансивером. На резисторы действует модулятор. Сопротивление элементов, как правило, не превышает 45 Ом, но есть исключения. Если говорить о приемниках на реле, то в них используются регулируемые триоды.Эти элементы от модулятора рабочие, и они различаются по чувствительности.

    Сборка многополюсных приемников

    Какие преимущества дает многополюсный детекторный КВ приемник перед любительскими диапазонами? Если верить отзывам специалистов, эти устройства дают высокую частоту и при этом потребляют мало электроэнергии. Большинство модификаций собираются с дипольными контакторами, а переходники применяются проводного типа. Разъемы для устройств подходят для разных классов.

    Некоторые модели содержат фазовые фильтры, снижающие риск сбоев вейвлеров.Также следует отметить, что стандартная схема приемника предполагает использование регулятора для регулировки частоты. Компараторы для некоторых экземпляров имеют тип канала. При этом используется триод только с одним изолятором, а его проводимость не опускается ниже 45 мк. Если рассматривать ресиверы на расширении, то они умеют работать только на низких частотах.

    Модели с двухходовым преобразователем

    Приемники RV на любительских диапазонах с двухходовыми преобразователями способны стабильно поддерживать частоту на уровне 400 МГц.Во многих моделях используется полюсная стабилизация. Работает от преобразователя и имеет высокую проводимость. Стандартная схема модификации включает контроллер на три выхода и конденсатор. Усилитель к модели подходит с варикапом.

    Также следует отметить, что высокочастотные устройства с преобразователем этого типа отлично справляются с импульсными помехами от блока. Компараторы используются с сеточными и емкостными резисторами. Параметр сопротивления на входе в цепь около 45 Ом.В этом случае чувствительность приемников может быть самой разной.

    Преобразователь с трехпроводным преобразователем

    Самодельный КВ-приемник на любительские диапазоны с трехпроводным преобразователем имеет один контактор. Разъемы используются с ним и без него. Также следует отметить, что резисторы применяются разной проводимости. В начале цепочки элемент на 3 мк. Как правило, он используется однополюсного типа и пропускает ток только в одном направлении. За ним расположен конденсатор с линейным проводником.

    Также следует отметить, что резисторы на выходе цепи имеют низкую проводимость. Во многих приемниках они используются переменного тока и могут пропускать ток в обоих направлениях. Если рассматривать модификации на 340 МГц, то они могут встретить компараторы с сеточными триггерами. Они работают с повышенным сопротивлением, а напряжение достигает 24 В.

    Модификации на 200 МГц

    Самодельный КВ приемник на любительских диапазонах с частотой 200 МГц очень распространен. Прежде всего следует отметить, что модели не умеют работать на компараторах.Часто встречаются линейные модификации. Однако наиболее распространенными устройствами считаются модели с декодерами переходов. Устанавливаются с комплектом переходников. Резисторы в начале цепи используются большой емкости, а их сопротивление равно не менее 55 Ом.

    Усилители бывают с фильтрами и без них. Если рассматривать коммутируемые модификации, то в них используются дуплексные конденсаторы. В этом случае стабилизатор используется вместе с регулятором. Для настройки каналов требуется модулятор.Некоторые ресиверы работают с ресивером. У них есть разъем серии PR.

    Приборы на 300 МГц

    Самодельный КВ приемник на любительские диапазоны с частотой 300 МГц включает в себя две пары резисторов. Компараторы в моделях встречаются грузоподъемностью 40 мк. Некоторые модификации содержат проводные удлинители. Эти элементы способны существенно снять нагрузку с конденсаторами.

    Если верить отзывам специалистов, то модели этого типа выделяются повышенной чувствительностью.Самодельные устройства Выпускаются без тетрода. Для улучшения проводимости сигнала применяются только транзисторы. Также следует отметить, что есть устройства с канальными фильтрами.

    400 МГц модификации

    Схема устройства на 400 МГц предполагает использование дипольного адаптера и сети резисторов. В трансивере у модели применен открытый фильтр. Чтобы собрать устройство своими руками, сначала заготавливают Тетрод. Конденсаторы под ней понижены низкой проводимостью и чувствительностью на 5 мВ.Также следует отметить, что приемники с низкочастотными преобразователями считаются распространенными устройствами. Далее для сбора устройства своими руками берется один модулятор. Этот элемент устанавливается перед преобразователем.

    Светочувствительные устройства

    LAMP AD приемник на любительских диапазонах низкой чувствительности может работать на разных каналах. Стандартная схема устройства предполагает использование одного стабилизатора. В этом случае используется переходник открытого типа. Проводимость резистора должна быть не менее 55 мк.Также важно отметить, что ресиверы изготавливаются с пластинами. Для сборки устройства своими руками заготавливается набор конденсаторов. Они имеют вместимость не менее 45 ПФ. Отдельно важно отметить, что ресиверы этого типа выделяются наличием дуплексных переходников.

    Приемники высокой чувствительности

    Прибор повышенной чувствительности работает на частоте 300 МГц. Если рассматривать простую модель, то она собрана на базе компаратора с проводимостью 4 мк.При этом разрешается применять фильтры с зажимом.

    Транзисторы на приемнике установлены однопроходного типа, а фильтры используются на 4 пф. Довольно часто встречаются проводные трансиверы. Они обладают хорошей проводимостью и не требуют большого расхода энергии.

    Модулятор можно применять только с одним варикапом. Таким образом, модель способна работать на разных каналах. Конденсатор расширения используется для решения проблем с отрицательным сопротивлением.

    На страницах нашего сайта тема звука поднималась многократно, и для тех, кто хочет продолжить знакомство с радиологами, мы подготовили интересную схему приемника-приемника. Этот радиоприемник очень чувствителен и достаточно селективен для приема коротковолновых частот по всему миру. Полуфабрикат 6An8. служит усилителем ВЧ, а другой - регенеративным приемником. Ресивер предназначен для работы с наушниками или в качестве тюнера, за которым следует отдельный усилитель-колесо.

    Для корпуса возьмем толстый алюминий. Шкала распечатана на листе плотной глянцевой бумаги, а затем приклеена к лицевой панели. Данные моторов катушек указаны на схеме, а диаметр корпуса. Толщина проволоки - 0,3-0,5 мм. Намотка катушки до витка.

    Для питания магнитолы нужно найти штатный трансформатор от любого маломощного лампового радиола, обеспечивающий примерно 180 вольт анодного напряжения при токе 50 и 6 мА.3 за плавку. Выпрямитель с разливом воды делать не обязательно - достаточно обычного тротуара. Разброс напряжений допустим в пределах + -15%.

    Настройка и устранение неисправностей

    Настройтесь на нужную станцию ​​примерно с помощью конденсатора C5. Теперь конденсаторный С6 - для точной настройки на станцию. Если ваш приемник нормально не принимает, то либо измените значения резисторов R5 и R7, формирующих через потенциометр R6 дополнительное напряжение на 7-м выходе лампы, либо просто поменяйте соединение контактов 3 и 4 на катушке обратной связи. L2.Минимальная длина антенны будет около 3 метров. С обычной телескопической снимать будет слабо.

    Коротковолновый приемник Как известно, «Театр начинается с вешалок», а путь к коротким волнам - с прослушивания любительских диапазонов и наблюдений за работой любительских радиостанций. На коротких волнах радиолюбители осуществляют радиосвязь в диапазонах 160 м (1,81–2,0 МГц), 80 м (3,5–3,8 МГц), 40 м (7,0–7,2 МГц), 30 м (10,1–10,15 МГц), 20 м (14,0–14,35 МГц), 17 м (18,068–18,168 МГц), 15 м (21.0-21,45 МГц), 12 м (24, 89-24,99 МГц) и 10 м (28,0-29,7 МГц).

    Как правило, основная проблема начинающего КВЧ - это приемник на любительских диапазонах, точнее его отсутствие. Обзор отрасли Ресиверы для автофургонов Pretty Roads; Кроме того, практически все модели в основном ориентированы на прием сигналов вещательных радиостанций, работающих в режиме амплитудной модуляции, и не обеспечивают хорошего приема любительских радиостанций, использующих разные виды излучения - телеграф (CW), однополосную модуляцию с пониженной несущей (SSB). ) и другие (например, поэтапно применяемые цифровые виды радиосвязи).

    Не очень сложный самодельный приемник кв на любительские диапазоны под силу и новичку-радиолюбителю, но следует иметь в виду, что настройка самодельного приемника - процесс, требующий понимания работы как отдельных узлов, так и конструкции в целом. Чаще всего при настройке не обойтись без минимума средств измерений, поэтому желательно изготовить и настроить приемник под руководством достаточно опытного радиолюбителя или радиоэлектроника.

    Приемник, разработанный польским радиолюбителем. SP5AHT, работает на любительских дистанциях 160, 80, 40, 20, 15 и 10 м и полностью отвечает требованиям для начинающих конструкций. Схема приемника довольно проста, а предложенная оригинальная конструкция облегчает повторение устройства. Выбор всего лишь из 6 любительских диапазонов был продиктован количеством позиций использованного малогабаритного переключателя галерей. Вместо одного или нескольких указанных диапазонов вы можете ввести другие - например, заменить диапазон 10 м диапазоном 17 м.Напряжение питания приемника - 12-14 В, потребляемый ток - не более 50 мА.

    Приемник супергетеродинный с промежуточной частотой 5 МГц, на которой осуществляется основная селекция принимаемых сигналов. Фильтр основной селекции - кварцевый, выполненный на 4-х малых кварцевых резонаторах на частоте 5 МГц.

    Схема приемника показана на рис. Антенна подключается к приемнику через разъем XS1. Принятые антенные сигналы поступают на переменный резистор R1, с помощью которого регулируется громкость.Затем через разделительный конденсатор C12 сигналы поступают во входную цепь, образованную конденсатором C13 и одной из катушек L1-L6, выбранных переключателем галереи. Малая емкость конденсатора С12 (10 пФ) несколько ухудшает качество входной цепи.

    В положении переключателя, показанном на схеме, контур образован конденсатором С13 и катушкой L1. К этой схеме подключена 1-я точка полевого транзистора T1, которая является смесителем для принимаемых сигналов и гетеродинного сигнала, поступающего на затвор 2-го транзистора через разделительный конденсатор C14.

    Гетеродин выполнен на транзисторе Т2 и для повышения стабильности генерируемой частоты запитан от встроенного 9-вольтового стабилизатора. Гетеродинный контур образован катушкой L7, конденсатором С10. Емкость варикапа D1 и одного из конденсаторов C1-C6 выбирается переключателем галереи. В положении переключателя, показанном на схеме, конденсатор С6 подключается к контуру.

    Перестановка гетеродина по частоте, а значит настройка на принимаемую радиостанцию ​​осуществляется изменением емкости варикапа D1, на который подается напряжение с переменного резистора R1.На удобство настройки на оси этого резистора надеется пластиковая ручка. Разъем XS2 к гетеродину можно подключить к цифровой шкале, на индикаторе которой будет отображаться частота настройки приемника.

    При супернейродинном приеме промежуточная частота представляет собой сумму или разность частот принятого сигнала и гетеродинного сигнала. В этом приемнике используется промежуточная частота 5 МГц, поэтому при работе в диапазоне 160 м частота гетеродина должна изменяться от 6.От 81 до 7,0 МГц (5+ (1,81-2,0)).

    Частоты гетеродина для всего любительского диапазона диапазонов (для промежуточной частоты 5 МГц) приведены в таблице 1.


    Следует иметь в виду, что выбранная схема гетеродина является компромиссом. На некоторых диапазонах перекрытие по частоте будет «с запасом». На других не получится полностью перекрыть весь диапазон (в частности, в диапазоне 10 м). Стремиться к полному ассортименту диапазонов не следует. При большом перекрытии частот плотность настройки (количество килогерц на оборот ручки регулировки) значительно увеличивается, и настройка на радиостанции становится очень «острой».К тому же становится более заметным в каждом переменном резисторе неровный подъем бегунка на токопроводящий слой. Что может привести к скачкообразному изменению частоты тряски. Таким образом, при настройке приемника целесообразно использовать конденсаторы С1-С6 для установки гетеродинных частот в наиболее востребованные диапазоны диапазонов. Которые в этой схеме полностью не перекрываются.

    Сигнал с промежуточной частотой 5 МГц, сформированный на выходе смесителя, проходит через 4-хкристальный кварцевый фильтр.Полоса пропускания фильтра составляет около 2,4 кГц. Резисторы R8 и R10 являются согласованной нагрузкой на входе и выходе фильтра и исключают ухудшение его амплитудно-частотной характеристики из-за влияния каскадов приемника.

    Сигнал, отобранный кварцевым фильтром, поступает на 1-ю затвор транзистора Т4, который играет роль детектора смешения. На 2-ю затвор транзистора поступает сигнал от опорного кварцевого генератора на транзисторе ТК. С помощью катушки L8 частота генератора задается соответствующей частотой строчной буквы кварцевого фильтра.В этом случае при выбранных гетеродинных частотах (Таблица 1) в диапазонах 80 и 40 м будут взяты станции, излучающие однодиапазонные сигналы с нижней боковой полосой (LSB), а в диапазонах 20, 15 и 10 м - с верхняя боковая полоса (USB).

    На выходе детектора смешения формируется низкочастотный сигнал (т.е. соответствующая речь оператора радиостанции или тон телеграфных посылок), который сначала проходит через фильтр нижних частот C27-R13-C30. «Срезая» высокочастотные составляющие спектра, а затем поступает на вход усилителя низких частот на транзисторах Т5-Т7.Первый каскад усилителя, выполненный на транзисторе Т5, через конденсатор С31 усиливает отрицательную обратную связь переменным током, что ограничивает усиление на частотах выше 3 кГц. Сужение полосы пропускания усилителя позволяет снизить уровень шума. Третий и третий каскад на транзисторах Т6 и Т7 имеют гальваническое соединение. Нагрузка третьего каскада - наушники низкого уровня.

    В авторской конструкции катушка L7 намотана на кольцо Т37-2 (красное) с проводом 00.35 мм и содержит 20 витков с отводом от 5 витка, считая от вывода, подключенного к общему проводу. Индуктивность катушки L7 составляет 1,6 мкГн. Если катушка используется на цилиндрическом каркасе, то ее необходимо разместить на экране.

    Катушка L1, которая используется во входной цепи в диапазоне 160 м, желательно лазить по ферритовому (например, 50ВЧ) или карбонильному кольцу (например, Т50-1). Остальные катушки (L1-L5, L8) представляют собой стандартные небольшие дроссели. Индуктивность катушек L1-L6 приведена в таблице 2, индуктивность L8 составляет 10 мкГн.

    В диапазонах 10 и 15 М индуктивности катушек L5 и L6 довольствуются малыми, что объясняется большой емкостью контурного конденсатора С13, который выбран на основе компромисса - для обеспечения удовлетворительных параметров входа схема на большинстве любительских диапазонов. Небольшое эквивалентное контурное сопротивление в диапазонах 10 и 15 м приводит к значительному снижению чувствительности приемника, поэтому целесообразно отказаться от использования приемника в диапазоне 10 м, заменив его дальностью 17 м. , для которого индуктивность катушки входной цепи должна быть равна 0.68 мкГн.

    Ленточные конденсаторы - C1-C6 - малогабаритные, для печатного монтажа, максимальной емкостью до 30 пФ. При настройке гетеродина на некоторые диапазоны параллельно с подстроечными конденсаторами добавляются конденсаторы постоянной емкости - например, в диапазоне 160 м - 300 пФ, в диапазоне 80 и 20 м - 200 пФ, в диапазоне 40 м - 100 пф.

    Переменный резистор R1 желательно применить многооборотный. Транзисторы BF966 можно заменить на КП350, но тогда в заглушках можно будет установить резисторные делители напряжения (100 кОм / 47 кОм).Вместо транзистора BF245 можно применить KP307, который, возможно, придется выбирать из нескольких экземпляров, чтобы гетеродин стабильно работал на всех диапазонах. Транзисторы SV547 заменены на КТ316 или КТ368 (в опорном генераторе) и на СТ3102 в усилителе низкой частоты. Детали приемника установлены на печатной плате (рис.2).

    Монтаж деталей осуществляется на опорных «пятцах», нарезанных фольгой. Остальная часть фольги используется как «общий провод».

    В ресивере можно применить другие типы переключателей камбуза (например, типа PKG).Но тогда придется изменить расположение элементов на печатной плате и ее размер.

    Конфигурирование приемных узлов целесообразнее тестировать как радиоэлементы. Установив на плату усилитель низкой частоты, проверьте сборку на соответствие концепции и напряжению питания. Постоянное давление на коллекторах транзисторов Т5 и Т6 (рис. 1) оно должно быть около 6 В. при значительном отклонении напряжения от заданного необходимого режима работы транзисторов подбором резисторов резисторов R16 и R17.При касании верхней отвертки (по схеме) выхода резистора R16 в наушниках, подключенных к выходу усилителя, должен быть слышен сильный гул. Работу опорного генератора на транзисторе ТК проверяют частотомером, подключив его к верхнему (по схеме) конденсатору с конденсатором С25. Выходная частота генератора должна быть около 5 МГц и оставаться стабильной.

    Работу гетеродина на транзисторе Т2 также проверяют частотомером, подключенным к разъему XS2.Гометродин должен стабильно работать на всех диапазонах. А «укладку» частот в требуемые пределы (таблица 1) следует производить регулировкой емкостных конденсаторов С1-С6. Поворачивая ручку настройки из одного крайнего положения в другое. При необходимости параллельно с подстроечным конденсатором устанавливаются конденсаторы постоянной емкости.

    На завершающем этапе настройки на входе приемной антенны на каждом диапазоне выдается сигнал от генератора стандартных сигналов. И проверьте чувствительность приёмника по диапазонам.Существенное ухудшение чувствительности на одном или нескольких диапазонах может быть вызвано недостаточной амплитудой гетеродинного сигнала (требуется подбор транзистора Т2). Неисправность входной цепи (необходимо проверить соответствие индуктивности катушек данным таблицы 2) или очень низкое качество катушки. Который используется штатным малогабаритным дросселем (требуется замена дросселя, например катушка намотана на ферритовое кольцо).

    Если чувствительность коротковолновый приемник.

    Оказывается вполне достаточно для работы в диапазонах 160-20 м (3-10 мкВ). Но сигналы любительских радиостанций на любом диапазоне тогда, скорее всего, принимаются с искажениями. Необходимо более точно установить частоту опорного кварцевого генератора, подобрав индуктивность катушки L8.

    Учитывая низкую чувствительность приемника, для успешных наблюдений за работой любительских радиостанций следует применять внешнюю антенну.

    Leave a Reply

    Ваш адрес email не будет опубликован. Обязательные поля помечены *