Плазменная пушка своими руками — орудие тесла
Суть
Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Его первичная обмотка содержит небольшое число витков и является частью искрового колебательного контура, включающего в себя также конденсатор и искровой промежуток. Вторичной обмоткой служит прямая катушка провода. При совпадении частоты колебаний колебательного контура первичной обмотки с частотой одного из собственных колебаний (стоячих волн) вторичной обмотки вследствие явления резонанса во вторичной обмотке возникнет стоячая электромагнитная волна и между концами катушки появится высокое переменное напряжение.
Работу резонансного трансформатора можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных колебаний, то при тех же усилиях максимальная амплитуда вырастает многократно. Так и с трансформатором Теслы — в роли качелей выступает вторичный колебательный контур, а в роли прилагаемого усилия — генератор. Их согласованность («подталкивание» строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства).
Описание простейшей конструкции
Схема простейшего трансформатора Теслы
Простейший трансформатор Теслы включает в себя входной трансформатор, катушку индуктивности, состоящую из двух обмоток — первичной и вторичной, разрядник (прерыватель, часто встречается английский вариант Spark Gap), конденсатор, тороид (используется не всегда) и терминал (на схеме показан как «выход»).
Первичная обмотка обычно содержит всего несколько витков медной трубки или провода большого диаметра, а вторичная около 1000 витков провода меньшей площади сечения. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.
Разрядник, в простейшем случае, обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение.
Вторичная катушка также образует колебательный контур, где роль конденсатора, главным образом, выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.
Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины.
Таким образом, трансформатор Теслы представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.
Функционирование
Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний в первичном контуре. Разрядник, включенный параллельно, замыкая источник питания (трансформатор), исключает его из контура, иначе источник питания вносит определенные потери в первичный контур и этим снижает его добротность. На практике это влияние может в разы уменьшить длину разряда, поэтому в грамотно построенной схеме трансформатора Теслы разрядник всегда ставится параллельно источнику питания.
Заряд
Заряд конденсатора производится внешним источником высокого напряжения на базе повышающего низкочастотного трансформатора. Ёмкость конденсатора выбирается таким образом, чтобы вместе с индуктором она составляла резонансный контур с частотой резонанса, равной высоковольтному контуру. Однако ёмкость будет отличаться от расчетной, так как часть энергии тратится на «накачку» второго контура. Напряжение заряда ограничено напряжением пробоя разрядника, которое, (в случае воздушного разрядника), можно регулировать, изменяя расстояние между электродами или их форму. Обычно напряжение заряда конденсатора лежит в диапазоне 2-20 киловольт. Знак напряжения при заряде конденсатора имеет значение в том смысле, что он не должен сильно «закорачивать» конденсатор, на котором напряжение постоянно меняет знак — Колебательный контур тут
Генерация
После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора, напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда (ионов). Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Колебания постепенно затухают, в основном, из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку, но продолжаются до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя разрядника существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.
Модификации трансформаторов Теслы
Во всех типах трансформаторов Теслы основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако, одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.На данный момент существуют:
SGTC (Spark Gap Tesla Coil) — классическая катушка Теслы — генератор колебаний выполнен на искровом промежутке (разряднике).
Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника.
Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В этом случае, частоту работы промежутка целесообразно выбирать синхронно частоте подзарядки конденсатора, и схема в этом случае ближе к картинке, а не тому, как она здесь описана. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются, (или просто замыкают), к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников, их иногда помещают в жидкие или газообразные диэлектрики, например, в масло. Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.
VTTC (Vacuum Tube Tesla Coil) (рус. ЛКТ) — ламповая катушка Теслы. В ней в качестве генератора ВЧ колебаний используются электронные лампы. Обычно, это мощные генераторные лампы, такие как ГУ-81, однако встречаются и маломощные конструкции. Одна из особенностей — отсутствие необходимости в высоком напряжении. Для получения сравнительно небольших разрядов достаточно 300—600 Вольт. Также VTTC практически не издает шума, появляющегося при работе катушки Теслы на искровом промежутке.
SSTC (Solid State Tesla Coil) — генератор выполнен на полупроводниках. Он включает в себя задающий генератор (с регулируемой частотой, формой, длительностью импульсов) и силовые ключи (мощные полевые MOSFET транзисторы). Данный вид катушек Теслы является самым интересным по нескольким причинам: изменяя тип сигнала на ключах, можно кардинально изменять внешний вид разряда. Также ВЧ сигнал генератора можно промодулировать звуковым сигналом, например музыкой — звук будет исходить из самого разряда. Впрочем, аудиомодуляция возможна (с небольшими доработками) и в VTTC. К прочим достоинствам, можно отнести низкое питающее напряжение и отсутствие шумного искрового разрядника, как в SGTC.
DRSSTC (Dual Resonant Solid State Tesla Coil) — за счёт двойного резонанса, разряды у такого вида катушек значительно больше чем у обычной SSTC. Для накачки первичного контура используется генератор на полупроводниковых ключах — IGBT или MOSFET транзисторах.
В аббревиатурах названий катушек Теслы, питаемых постоянным током, часто присутствуют буквы DC, например DCSGTC.
QCW DRSSTC (Quasi Continious Wave) — особый тип транзисторных катушек Теслы, характеризующийся, так называемой, плавной накачкой: постепенным и плавным, (а не резким ударным, как в обычных катушках), нарастанием ряда параметров, (а именно: напряжения первичного контура и тока первичного контура, и, возможно, напряжения вторичного контура). В классической импульсной катушке Теслы рост тока в первичной обмотке обычно происходит в течение времени, сравнимым с длительностью периода (от 2—3 до 7—10 и более периодов) резонансной частоты, то есть, за время порядка десятков — сотен микросекунд. В QCW время нарастания составляет десятки миллисекунд, то есть, больше примерно на два порядка. Простым примером около-QCW являются ламповые катушки Теслы с шифтером. Из-за 50-герцового синуса на его выходе возникает эффект полуплавной накачки, которая обеспечивает довольно внушительный прирост длины разряда относительно типичного жёсткого прерывания (по катоду, или сетке). В результате данного приёма достигается характерный вид молний в виде длинных и практически прямых, мечевидных разрядов, длина которых многократно превышает длину намотки вторичной обмотки. Дело в том, что полное напряжение на терминале QCW DRSSTC никогда не достигает пробойного для вторички: оно всегда остаётся довольно небольшим, десятки киловольт или типа того. Возникший на небольшом напряжении стример продолжает подпитываться энергией в течение всего времени накачки, и поэтому растёт вверх, по силовым линиям поля, вместо того, чтобы пробиваться сбоку тороида на страйкринг. Именно для этого и делается плавная накачка в катушках Теслы. За счёт такого приёма достигается следующий эффект: вначале появляется небольшой разряд, который затем растёт не с высокой скоростью, пробивая плазменный канал в случайном направлении, а с низкой (так, что этот процесс развития можно даже заснять обычными видеокамерами), что обусловливает его неразветвление и огромную относительно длины вторичной обмотки длину. По сути, мы постоянно подогреваем небольшой возникший разряд, который удлиняется по мере перекачки энергии во вторичную обмотку. Но напряжение на выходе такой катушки Теслы невелико и не превышает десятков киловольт.
В отдельную категорию также относят магниферные катушки Теслы.
Использование трансформатора Теслы
Разряд трансформатора ТеслыРазряд с конца провода
Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в частоте минимальной электрической прочности воздуха способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.
Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые, протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам (см.: скин-эффект, Дарсонвализация), оказывая при этом «тонизирующее» и «оздоравливающее» влияние.
Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.
Эффекты, наблюдаемые при работе трансформатора Теслы
Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:
- Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
- Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место особый вид искрового разряда — скользящий искровой разряд.
- Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
- Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.
Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что некоторые ионные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, ионы натрия меняют обычный окрас спарка на оранжевый, а бора — на зелёный.
Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющейся в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.
Влияние на организм человека
Возможно, эта статья содержит оригинальное исследование. Добавьте , в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (5 мая 2018) |
Являясь источником высокого напряжения, трансформатор Теслы может быть смертельно опасен. Особенно это касается сверхмощных ТТ с управлением на лампах или полевых транзисторах. В любом случае, даже для маломощных трансформаторов Тесла характерен выброс высоковольтной высокочастотной энергии, способной вызвать локальные повреждения кожного покрова в виде плохо заживающих ожогов. Для трансформаторов Тесла средней мощности (50-150 Ватт), такие ожоги могут привести к повреждению нервных окончаний и значительное повреждение подкожных слоев включая повреждение мышц и связок. Трансформаторы Тесла с искровым возбуждением менее опасны с точки зрения ожогов, однако, высоковольтные разряды следующие с паузами, наносят больший вред нервной системе и способны вызвать остановку сердца (у людей с проблемами сердца). В любом случае, вред, который могут нанести высокочастотные мощные генераторы, к которым относятся Трансформаторы Тесла, сугубо индивидуален и, зависит от особенностей организма и психического состояния конкретного человека.
Замечен факт, что женщины наиболее остро реагируют на излучения мощных радиочастотных устройств, соответственно и реакция на ТТ у женщин острее чем у мужчин. К трансформатору Теслы, как к любому электроприбору, нельзя допускать детей без присмотра взрослых.
Однако существует и другое мнение, касающееся некоторых видов трансформаторов Теслы. Так как высокочастотное высокое напряжение имеет скин-эффект, то несмотря на потенциал в миллионы вольт, разряд в тело человека не может вызвать остановку сердца или другие серьёзные повреждения организма, несовместимые с жизнью.
В противоположность этому другие высоковольтные генераторы, например, высоковольтный умножитель телевизора и иные бытовые высоковольтные генераторы постоянного тока, имеющие несравненно меньшее выходное напряжение (порядка 25 кВ), могут являться смертельно опасными. Всё это потому, что в вышеуказанных преобразователях используется частота в 50 герц (в умножителе классического телевизора частота около 15кГц, в мониторах еще выше), следовательно, скин-эффект отсутствует, или исчезающе слаб, и ток потечёт через внутренние органы человека (опасным для жизни считается ток в десятки мА).
Несколько другая картина со статическим электричеством, которое может очень чувствительно ударить током при разряде (при прикосновении к металлу), но при этом не смертельно, так как статический заряд сравнительно небольшой, и протекающий ток не успеет нанести вред человеку (заряд равен произведению тока и времени).Еще одна опасность, которая подстерегает при использовании трансформатора Теслы, — это избыток озона в крови, который может повлечь за собой головные боли, так как при работе устройства производятся большие порции этого газа.
Трансформатор Теслы в культуре
В фильмах
В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы, о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Тесла».
В фильме «Престиж» Кристофера Нолана, для победы одного иллюзиониста над другим в мастерстве «телепортации», Роберт Энджер (Хью Джекман), обращается к Николе Тесле за помощью. Никола же в свою очередь сделал ему машину, с трансформатором Теслы, у которой оказалась одна недоработка — она не телепортировала, а клонировала. Телепортация же была побочным эффектом.
В фильме «Ученик чародея» в одном из эпизодов демонстрируется музыкальное свойство катушек. Этот эффект достигается уменьшением и увеличением частоты.
В японском фильме «Легенда о маске» также присутствует трансформатор Теслы.
В фильме Три икса (xXx) в цитадели преступной организации, ночном клубе используют огромные трансформаторы Теслы, дающие внушительные разряды по всёму помещению, с декоративной целью.
В телесериале «Хранилище 13» главные герои используют трансформатор в виде оружия.
В фильме «Звуки шума» один из барабанщиков пробует играть на только что сделанной барабанной установке которая выдает электрические дуги в такт ударам по ней.
В фильме «Metallica: Сквозь невозможное» при исполнении песни «Ride the Lightning (песня)» были использованы трансформаторы Теслы для подачи разряда к подвешенному над сценой креслу, модель которого изображена на обложке альбома «Ride the Lightning».
В мультсериале «Смешарики: Пин-код» один из главных героев, Лосяш, создаёт аналог трансформатора Теслы — «Генератор Лосяша».
В компьютерных играх
В игре Kingdom Rush можно проапгрейдить обычную пушку до трансформатора Теслы.
В серии игр Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом (катушка Теслы), которая поражает противника мощными электрическими разрядами. Ещё в игре присутствуют танки (танк Теслы) и пехотинцы (солдат Теслы), использующие эту технологию. В игре Command & Conquer Red Alert 3 — Uprising есть скаты, это боевые амфибии оснащенные орудиями Тесла. Также в игре Tremulous люди (Humans) могут строить трансформаторы Теслы для защиты своих баз.
В играх серии Wolfenstein есть оружие, именуемое «Орудие Тесла», поражающее противника электрическим разрядом на большом расстоянии.
В игре Tomb Raider: Legend на одном из уровней есть статичные «установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в «Half-Life 2»). А также с помощью одной из них можно умертвить огромного монстра-босса.
В модификации Half-Life 2 Dystopia также существует оружие «Tesla Gun», способное создавать разряды и в режиме альтернативной стрельбы — шаровые молнии. Состоит из цевья и металлического шара вместо дула, внешне похожего на сферическую астролябию.
В игре Fallout присутствует броня Теслы, также она есть и в игре Arcanum, также в загружаемом дополнении «Broken Steel» для игры «Fallout 3» присутствует пушка Теслы и сама катушка Теслы. В игре Fallout New Vegas это оружие можно приобрести в некоторых магазинах, например у Ван Граффов или у оружейников, в дополнении Fallout: New Vegas — Old World Blues, мозг главного героя заменили на катушку Теслы передающею сигналы мозга героя.
В игре Arcanum (жанр RPG) существуют соответствующие запчасти (Tesla coil и т. п.) и виды вооружения (Tesla rod, Tesla gun и т. п.), различные электрические щиты и т. п. Они имеют свойство наносить особый тип повреждений — electric damage.
В первой редакции игры Blood также присутствовало оружие под названием Tesla, поражавшее противника либо молниевидным разрядом, либо неким подобием шаровой молнии.
В игре Вивисектор присутствует оружие, называемое «Тесла», бьющее электрическим разрядом по противнику.
В игре Quake 4 есть оружие Lightning Gun, генерирующее электрический разряд, аннигилирующий слабых противников.
В игре Nancy Drew: Secret of the Old Clock, используется как вход в «тайный» чердак.
В игре Assassin’s Creed 2 при прохождении Истины рассказывается выдуманная история о Никола Тесле, якобы он получил всемогущий артефакт, но позже его отняли потомки тамплиеров. Также во время прохождении Истины появляются 2 фотографии трансформатора Теслы.
В игре Xenus: Точка кипения при прохождении последних заданий, в одной из комнат стоит огромная катушка Теслы.
В игре SCP-Containment Breach в коридорах могут сгенерироваться Тесла-ворота, которые при приближении к ним сразу убивают игрока.
В игре Minecraft с дополнением (модом) IndustrialCraft можно скрафтить катушку Теслы, которая вызывает смерть всем существам, находящимся в радиусе 4 блоков от катушки, а с дополнением (модом) GregTech можно скрафтить посох Теслы, который сжигает заряд брони другого игрока.
В игре Dishonored есть ТТ на различных уровнях, также есть миссия связанная с этим трансформатором
В игре Nancy Drew: The Deadly Device сюжет завязывается вокруг трансформатора Теслы, от которого погибает учёный.
В игре Clash of Clans есть защитное сооружение «Потайная Тесла», которая бьет нападающие войска электрическими разрядами, также в игре Clash Royal от разработчиков Clash of Clans существует персонаж Спарки (Sparky) который стреляет шаром электричества.
В игре Overwatch один из персонажей Винстон использует оружие, напоминающие катушку Тесла. Механика подразумевает бой на ближних дистанциях, из-за не дальнобойности электрических молний. Так же, такое оружие бьет сквозь любые барьеры и щиты, что обуславливается особенностями электрических молний.
В музыкальном искусстве
Российская группа Tesla Musiс Band записала первый в мире музыкальный альбом с оригинальным звучанием музыкального трансформатора Теслы. Также группа Tesla Music Band использует музыкальные трансформаторы Теслы в создании шоу.
Американская группа ARC ATTACK использует трансформаторы Теслы в качестве источника звуков. То есть разряд, создаваемый трансформатором, может звучать, «петь».
Российская команда Tesla-FX утверждает, что впервые сыграла гимн России на созданном ими музыкальном трансформаторе Теслы.
(ещё гимн России на трансформаторе Теслы: https://www.youtube.com/watch?v=QFFgeQ3ptLQ)
Для записи песни «Thunderbolt» с альбома Biophilia певица Бьорк также использовала катушку Теслы для создания звуков, имитирующих разряды молний.
В шоу-бизнесе
Трансформатор Теслы может применяться для создания спецэффектов в различных шоу. Шоу Full-Moon-Party с использованием двух трансформаторов Теслы прошло в ночь с 13 на 14 августа 2011 года в Москве в клубе Arena-Moscow. Первое в России шоу с трансформаторами Теслы состоялось 21 мая 2011 г. на презентации нового Ferrari FF в подмосковной Барвихе.
> См. также
- Резонанс
- Закон Пашена
- Плазменная лампа
- Ионофон
Как сделать катушку Тесла своими руками в домашних условиях
Никола Тесла, как и многие другие физики, многие годы своей жизни посвятил изучению энергии токов и способам ее передачи, созданию уникальных разработок. Одной из них была катушка Тесла – это резонансный трансформатор, предназначенный для получения токов высокой частоты.
Тесла, определенно, был гением. Именно он принес в мир использование переменного тока и запатентовал множество изобретений.Одно из них — знаменитая катушка, или трансформатор Тесла. Если у вас есть определенные знания и навыки, вы вполне можете самостоятельно создать катушку Тесла дома.
Давайте выяснять, какова суть этого устройства и как создать его в домашних условиях, если вам вдруг этого очень сильно захотелось.
Как уже отмечалось ранее, катушка Тесла представляет собой резонансный трансформатор. Назначение трансформатора — изменение значения напряжения электрического тока. Эти приборы бывают соответственно понижающие и повышающие.
Более подробно подробно о трансформаторах, их общем устройстве и назначении читайте в отдельном материале.
С точки зрения электроники катушка Тесла представляет собой две обмотки без общего сердечника и с разным числом витков.
Трансформатор Тесла — повышающий трансформатор.
Напряжение на выходе такого трансформатора возрастает в сотни раз и может достигать значений порядка миллиона вольт.
Изобретение Теслы не просто работает, а работает очень зрелищно.
Включив трансформатор, можно наблюдать эффектные разряды (молнии), длина которых достигает нескольких метров.
Из чего состоит катушка Тесла
Прежде чем собирать катушку Тесла, рассмотрим ее составляющие и форму.
Катушка Тесла выполняется в форме Тора (тороидальной фигуры, тороида).
Тороидальные фигуры в первую очередь понятие из геометрии. Тор — поверхность, полученная путем вращения образующей окружности вокруг оси, лежащей в плоскости этой окружности. Лучше один раз взглянуть, чем пытаться себе представить. На рисунке ниже — тороидальные поверхности.
Вот так выглядит классическая тороидальная фигура
Тороид является важной составляющей катушки Тесла и изготавливается, как правило, из алюминиевой гофры.
В составе этого устройства он выполняет следующие функции:
- уменьшает резонансную частоту;
- аккумулирует энергию перед образованием стримера;
- создает электростатическое поле, отталкивающее стример от вторичной обмотки трансформатора.
Вторичная обмотка
Вторичная обмотка — основная составляющая катушки Тесла, которую также называют просто «вторичка». Обмотка, как правило, содержит около 800-1200 витков, а мотают ее на трубах ПВХ, которые можно купить в обычном строительном магазине.
Исходя из необходимого количества витков выбирается диаметр провода обмотки. Стандартное отношение длины вторичной обмотки катушки к ее диаметру — 4:1 или 5:1. Для того, чтобы витки не расползались, их покрывают лаком.
Первичная обмотка и защитное кольцо
Первичная обмотка (или первичка) катушки Тесла должна иметь низкое сопротивление, так как по ней будет проходить большой ток. Обычно ее изготавливают из проводов сечением более, чем 6 миллиметров. Также в качестве первичной обмотки часто используют медную трубу для кондиционеров.
Форма первичной обмотки — цилиндрическая, плоская или коническая.
Защитное кольцо — незамкнутый плоский виток заземленного медного провода. Кольцо устанавливается для того, чтобы стример из тороида, попав в первичную обмотку, не вывел из строя электронику.
Простой генератор, катушка Теслы своими руками
Сегодня я собираюсь показать вам, как я как сделать простую катушку Тесла своими руками в домашних условиях! Вы могли видеть такую катушку в каком то магическом шоу или телевизионном фильме.
Если мы будем игнорировать мистическую составляющую вокруг катушки Тесла, это просто высоковольтный резонансный трансформатор который работает без сердечника. Так, чтобы не заскучать от скачка теории давайте перейдем к практике.
Схема данного устройства очень простаяДля создания нам нужны следующие компоненты :
- источник питания, 9-21V , это может быть любой блок питания
- маленький радиатор
- транзистор 13009 или 13007, или почти любые транзисторы NPN с аналогичными параметрами
- переменный резистор 50kohm
- 180Ohm резистор
- катушка с проводом 0,1-0,3, я использовал 0.19mm,, около 200 метров.
Для намотки нужен каркас , это может быть любой диэлектический материал — цилиндр примерно 5 см и длиной 20 см. В моем случае это часть 1-1 / 2 дюйма ПВХ трубы из строительного магазина.
Начнем с самой сложной части — вторичной обмотки. Он имеет 500-1500 мотков катушки , мой около 1000 оборотов. Закрепить начало провода с выводом и начать наматывать основной слой — для ускорения процесса можно это делать шуруповертом.
Так же желательно вспрыснуть уже намотанную катушку лаком .
Первичная катушка намного проще, я положил бумажную ленту липкой стороной наружу, в случае, чтобы сохранить способность передвигать позицию и намотайте ее на 10 витков провода.
намотка трансформатора ТеслаВся схема собрана на макетной плате.
Подключение первичных и вторичных обмоток тоже не легкий процесс , т.к изоляция последних имеет специальное покрытие , которое должно быть зачищено перед пайкой.Перед тем, как включить питание в первый раз, поместите переменный резистор в среднем положении и поставите лампочку вблизи катушки, и тогда вы сможете увидеть эффект беспроводной передачи энергии.Будьте осторожны при пайке переменного резистора! 9/10 катушки не работает из-за неправильно припаянного резистора .
Таким образом, мы сделали катушку Теслы .
Включите питание, и медленно поворачивайте переменный резистор.
Это довольно слабая катушка, но каким-либо образом будьте осторожны и не размещайте рядом электронные устройства: такие как сотовые телефоны, компьютеры и т.д. с рабочей зоной катушки .
Видео: Расчет трансформатора тесла на ютуб
Катушка тесла из строчного трансформатора
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | |
---|---|---|---|---|---|
Биполярный транзистор | 2N3055 | 1 | КТ819ГМ | ||
Выпрямительный диод | BY500-200 | 1 | 200 B | ||
Электролитический конденсатор | 4700 мкФ 25В | 1 | |||
Конденсатор | 0.47 мкФ 200В | 1 | |||
Резистор | 470 Ом | 1 | 2 Вт | ||
Резистор | 22 Ом | 1 | 5 Вт |
Строчные трансформаторы являются одними из самых часто используемых любителями источников высокого напряжения, в основном из-за их простоты и доступности. В каждом CRT телевизоре (большом и тяжелом), который сейчас выбрасывают люди, есть такой трансформатор.
строчный трансформаторВ отличие от многих трансформаторов, которые есть в другой электронике, предназначенных для работы с обычным переменным током 50Гц, и понижающих трансформаторов, строчный трансформатор работает на более высокой частоте, около 16КГц, а иногда и выше.
Многие современные строчные трансформаторы выдают постоянный ток. Старые строчные трансформаторы выдавали переменный ток, что позволяло делать с ними что угодно. Строчные трансформаторы переменного тока более мощные, так как в них нет встроенного выпрямителя/умножителя. Строчные трансформаторы постоянного тока легче найти, и именно они рекомендуются для этого проекта.
Убедитесь, что ваш строчный трансформатор имеет воздушный зазор. Это значит, что сердечник не является замкнутым кругом, а скорее напоминает букву С, с зазором около миллиметра.
Почти во всех современных строчных трансформаторах он есть, поэтому если вы используете современный строчный трансформатор, то это можно не проверять.
В данной схеме используется транзистор 2N3055, который любят и ненавидят строители качеров на строчных трансформаторах. Их любят за их доступность и ненавидят за то, что они обычно воняют. Они склонны сгорать и довольно эффектно, но схема работает с ними невероятно хорошо. Плохую репутацию 2N3055 получил при использовании его в простых одно-транзисторных качерах, в которых на транзисторе присутствует высокое напряжение. В этой схеме добавлено несколько деталей, которые значительно увеличивают её выходную мощность. Теория работы схемы написана ниже.
В этой схеме очень мало элементов, и все они описаны на этой странице.И многие детали могут быть заменены.
Значение резистора 470 Ом можно поменять. Я использовал резистор на 450 Ом, полученный из трех соединенных последовательно резисторов по 150 Ом. Его значение не критично для работы схемы, но для уменьшения нагрева используйте максимальное значение резистора, при котором схема работает.
Значение нижнего резистора может быть изменено для повышения мощности. Я использую резистор 20 Ом, собранный из двух последовательно соединенных резисторов по 10 Ом. Чем меньше его значение, тем выше температура и меньше время работы схемы.
Конденсатор, находящийся рядом с транзистором(0.47 мкФ) может быть заменен для увеличения мощности. Чем больше его значение, тем больше выходной ток (и температура дуги) и меньше напряжение. Я остановился на конденсаторе 0.47мкФ.
Число витков на катушке обратной связи (катушка с тремя витками) может изменять выходную мощность. Чем больше витков, тем больше сила тока, но не напряжение.
Эта схема отличается от более распространенного одно-транзисторного качера тем, что в неё добавлен диод и конденсатор, который подключается параллельно диоду.
Диод защищает транзистор от скачков напряжения обратной полярности, которые могут спалить транзистор. Можно использовать диод другого типа. Я использовал диод GI824, вынутый из телевизора.
При выборе диода, обращайте внимание на напряжение и скорость переключения. Чтобы узнать, подходит ли ваш диод, найдите даташит на диод BY500, а потом на ваш диод и сравните параметры. Если ваш диод сопоставим с этим или лучше его, то он подходит.
Конденсатор — это ключ к высокой выходной мощности.
Транзистор генерирует частоту, установленную главным образом первичной катушкой и катушкой обратной связи. Конденсатор и первичная обмотка образуют LC цепь. LC цепь работает на определенной частоте, и если настроить схему так, чтобы эта частота была одинаковой с частотой транзистора, выходная мощность значительно увеличиться. Теория LC цепи похожа на теорию катушки Тесла. Эта схема может быть настроена путем изменения емкости конденсатора и количества витков на первичных/вторичных обмотках.
Эта схема требует мощного блока питания, который описан ниже.
Блок питания
Схеме необходим мощный блок питания постоянного тока с выходным напряжением от 12 до 30 вольт и от 1 до желаемого вами количества ампер. Хорошей идеей является сделать регулируемый блок питания, чтобы схема получала именно такое напряжение, какое ей нужно. Если схема собрана неправильно, и используется блок питания вроде этого, схема сгорит. Но регулируемое напряжение необязательно для нормальной работы.
Я использовал трансформатор на 300 Вт от усилителя. У него есть обмотки на 2, 4, 15, 30 и 60 вольт. Схема требует от 12 до 18 вольт для 2N3055. Я часто запускаю схему от 30В, но ненадолго, и транзистор установлен на мощный радиатор. При 15В, схема может работать бесконечно, так как после 30 минут работы, температура не превышала комнатную.
Переменный ток с трансформатора идет на мостовой выпрямитель 400 Вт, установленный на радиаторе, а с него на конденсатор 7800 мкФ 70В, чтобы сгладить напряжение. Используя аналогичные компоненты, вы можете сделать свой блок питания.
Также, в качестве блока питания можно использовать импульсные блоки питания, ИБП. Они есть в зарядных устройствах ноутбуков, ЗУ для автомобильных аккумуляторов и блоках питания компьютеров. Часто у них на выходе 12В и ток до 10А, что подходит для этой схемы.
Монтаж
монтаж катушки теслаЭто очень простая по сборке схема. Моя сборка не является инструкцией и примером, но вы можете повторить её. Всё смонтировано на куске MDF, и элементы расположены свободно, чтобы свести к минимуму помехи от проводов, расположенных рядом и создать условия для охлаждения. Используйте многожильный провод. На многочисленных фотографиях подробно показаны различные элементы схемы, что зачастую полезнее слов.
Одним из наиболее важных моментов в сборке является радиатор транзистора. 2N3055 изготовлен в корпусе ТО-3. Вы можете купить ТО-3 радиаторы, но их немного трудно найти. Я использовал радиатор от компьютерного процессора с отверстиями для его контактов на плоской стороне.
Провода от контактов проходят между лопастями.
Транзистор прикреплен к радиатору саморезами. Помните, что необходимо использовать термопасту между транзистором и радиатором. Провода, идущие к строчному трансформатору крепятся к нему при помощи крокодильчиков, чтобы можно было менять строчные трансформаторы для экспериментов.
Другим важным моментом являются обмотки строчного трансформатора. Эмальная изоляция медной проволоки это хорошо, но лучше добавить дополнительную изоляцию между сердечником и обмотками. Сердечник может иметь острые края, и если эмаль обдерётся, то может произойти короткое замыкание. Я при намотке катушек снял металлический зажим, скрепляющий половинки трансформатора, намотал катушки, а потом установил его снова. На некоторых трансформаторах такое невозможно, и провод надо будет обматывать вокруг сердечника. Обмотки должны быть намотаны из фазы, что значит, что они мотаются вокруг сердечника в противоположных направлениях.
При использовании этой схемы не проводите никаких манипуляций с подключенными проводами. Также проверяйте температуру транзистора и резисторов во время работы, но делайте это только при отключённом от сети устройстве. Если какой то элемент ощутимо теплый, то не включайте схему, пока он не остынет.
Конденсаторы могут сохранять опасный заряд, поэтому будить осторожны.
Кроме того, носите обувь на резиновой подошве при работе с высокими напряжениями и прикасайтесь к включённому устройству только одной рукой. Убедитесь в том, что схема была подключена к земле после работы, чтобы не получить электрический шок. Не пытайтесь настраивать включенную схему.
С этой схемой можно делать многие вещи, например использовать её для питания катушки Тесла, плавления соли или просто забавного времяпровождения с электрическими дугами.
Простая ЭМИ пушка своими руками » Уникальные статьи и самоделки!
Этот пост может содержать партнерские ссылки. Это означает, что я зарабатываю небольшую комиссию за ссылки, используемые без каких-либо дополнительных затрат для вас. Дополнительную информацию смотрите в моей политике конфиденциальности.
В этой статье мы соберем и протестируем вот такую ЭМИ пушку, с помощью которой можно выводить из строя разную электронику.
Автором данной самоделки является Роман, автор YouTube канала «Open Frime TV». В подобных статьях, видеороликах и прочих материалах, вставляют предупреждающую надпись, на всякий случай вот она:
А теперь переходим непосредственно к самоделке. Думаю, каждый кто собирал катушку Теслы видел, как она негативно влияет на различную электронику. Автор, когда изготовил и тестировал свою первую катушку, угробил телефон, было очень неприятно.
В чем же причина выхода из строя приборов? Все очень просто — сильное электромагнитное излучение большой частоты.
С этим вроде разобрались. Теперь что касается ЭМИ. Катушку Теслы, разумеется, с собой носить не будешь, а значит нужно сделать что-то подобное, только меньших размеров.
Можно реализовывать данный проект 2-мя способами. Первый показал AKA KASYAN (известный блогер на YouTube) в своем ролике.
Такая топология похожа на Качер Бровина (кто в теме, тот поймет). Хорошо, раз это показали, тогда остается второй вариант — делать на разряднике. Это проще в реализации и не требует особых навыков пайки.
Материалы
Задающее устройство
В первую очередь — это задающее устройство. Им может быть вот такой китайский модуль:
Такой можно без особых проблем приобрести в китайском интернет магазине Алиэкспресс. Стоят такие модули, как видите, довольно таки не дорого. Также, найти похожий модуль можно в дешевых китайских электрошокерах. Автор как раз будет использовать именно такой:
Этот старый китайский шокер, пролежал пару лет без дела. Автор его разобрал и достал нужный для данной самоделки элемент. Работать он может от одной или даже 2-ух литий-ионных аккумуляторов формата 18650.
Корпус
Дальше нам понадобится корпус. Тут идеально подходит корпус от блока питания ноутбука.
Провода
Следующий элемент — провод для намотки катушки диаметром от 0,5 мм и до 1 мм.
Ну и последний компонент — это разрядник. Его можно делать из чего угодно, хоть и старой свечи автомобиля, хоть из 2-ух гвоздей, закрепленных на опоре. Автор же взял 2 винтика м3 и сделал вот такой импровизированный разрядник:
Изменяя расстояние между выводами, мы изменяем напряжение пробоя, а соответственно и частоту работы устройства.
Схема сборки
Она довольно простая. Как видим, тут у нас расположен колебательный контур.
Как только конденсаторы внутри модуля зарядились до напряжения пробоя, происходит разряд и в контуре возникает магнитное поле.
Не забываем, что чем ниже напряжение пробоя, тем выше частота. Остается только подбором расстояния пробоя найти оптимальную частоту работы.
Со схемой закончили, можно приступать непосредственно к сборке нашего устройства. Собирать сегодняшнее устройство будем с помощью термо из суперклея, все в лучших традициях самодельщиков.
В первую очередь изготавливаем контур, он будет проходить по всему периметру корпуса. Это самое сложное, что придется сделать. Берем провод и не спеша укладываем его на внутреннюю сторону стенки корпуса, проклеивая суперклеем.
Таким вот способом делаем 4 витка. Как видим, после проделанной работы все пальцы будут в суперклее, куда же без этого.
Далее автор решил сразу протестировать устройство, не установив даже разрядник. Он просто хотел узнать, на что способно такое довольно компактное самодельное устройство. Первое, что попалось под руку, это старый мультиметр.
Как видим, при приближении к нему нашего устройства, значения пропали с дисплея мультиметра. Возможно, если подержать так большее время, мультиметр полностью выйдет из строя, но автору стало его жалко, и он прекратил эксперимент. Дальше он начал искать, чем бы еще проверить ЭМИ пушку. Под руки попали старые часы.
Как видите, с ними происходит тоже самое, что и с мультиметром. Вначале пропали значения, а потом часы вообще сбросились. Больше не нужной электроники в доме не было, тогда автор взял вот такую миниатюрную китайскую плату зарядки для литий-ионного аккумулятора:
Как видим, при внесении в поле, начал светить красный светодиод сигнализирующий о процессе зарядки, ну а так с ней ничего страшного не произошло. Давайте так же пробуем поднести наше устройство к старому телефону.
Но увы, это Nokia и ей такие игрушки до одного места. Как видите, область применения такой штуки большая, но не безграничная, так как при такой простоте устройства большего и не получишь.
Теперь остается все нормально закрепить, установить кнопку и закрыть корпус. Это дело 5-ти минут, справится даже школьник.
По-хорошему, разрядник нужно настроить для максимального эффекта, но это уже на выбор того, кто будет повторять данное устройство.
Устанавливать вовнутрь зарядку для аккумулятора не стоит, сами понимаете это было бы глупо. Поэтому автор вывел разъем для зарядки.
Ну а на этом сборка завершена. Для закрепления произведем еще немного тестов, но уже в собранном виде.
Результат вы видите сами. Да, и при использовании не стоит забывать, что некоторые устройства находятся в металлическом корпусе и поэтому на них не будет оказываться влияние — клетка Фарадея как никак. Ну а на этом все. Благодарю за внимание. До новых встреч!
Видео
Источник
Портативная Тесла-пушка: испытание в slow-mo
Канал SmarterEveryDay собрал в мастерской портативный Тесла-генератор, выполненный в форме футуристического ружья. Благодаря камере, снимающей с частотой в 28 000 кадров, мы можем наглядно увидеть, как разряды миниатюрных молний поражают все вокруг (и даже самого стрелка).
Катушка Тесла — это, пожалуй, одно из самых зрелищных научных устройств, когда-либо придуманных человеком. Резонансный трансформатор, производящий высокое напряжение с высокой частотой, весьма прост в изготовлении, при наличии базовых познаний в физике и механике. Признайтесь честно: каждый хотя бы раз в жизни мечтал получить в личное распоряжение нечто подобное. Канал SmarterEveryDay не поленился и собрал себе портативный Тесла-пистолет, напоминающий оружие из какой-нибудь футуристической пост-апокалиптической игры. И эта штука выглядит и стреляет просто потрясающе!
Немного расстраивает тот факт, что искры вылетают из дула в случайных направлениях, так что у вас наверняка не получится поиграть в Охотников за приведениями и подпалить кого-нибудь направленным потоком электричества. На самом деле, вы и сами находитесь в зоне риска, используя этот агрегат, так что если соберетесь повторить инженерный опыт и собрать в гараже Тесла-ружье, то не забывайте о базовых мерах предосторожности.
Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника, конденсатора, тороида (который используется не всегда) и выходного терминала. Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная на порядок больше витков, но провода меньшего диаметра. SmarterEveryDay выбрал цилиндрическую форму катушек. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.
Разрядник, в простейшем случае, обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение. Вторичная катушка также образует колебательный контур, где роль конденсатора, главным образом, выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя. Терминал предназначен для получения предсказуемых искровых разрядов большой длины.
Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.
Уничтожитель электроники | Мастер-класс своими руками
Представьте, что у вас есть некое устройство, которое способно вывести из строя любую электронику на расстоянии. Согласитесь, похоже на сценарий какого-то фантастического фильма. Но это не фантастика, а вполне реальность. Такое устройство сможет сделать почти любой желающий своими руками, из деталей, которые свободно можно достать.Описание устройства
Уничтожитель электроники – электромагнитная пушка, посылающая мощные направленные электромагнитные импульсы высокой амплитуды, способные вывести из строя микропроцессорную технику.
Принцип работы уничтожителя
Принцип работы отдаленно напоминает работу трансформатора Тесла и электрошокера. От элемента питания питается электронный высоковольтный повышающий преобразователь. Нагрузкой высоковольтного преобразователя является последовательная цепь из катушки и разрядника. Как только напряжение достигнет уровня пробивки разрядника, происходит разряд. Этот разряд дает возможность передать всю энергию высоковольтного импульса катушке из проволоки. Эта катушка преобразовывает высоковольтный импульс в электромагнитный импульс высокой амплитуды. Цикл повторяется несколько сот раз в секунду и зависит от частоты работы преобразователя.
Схема прибора
В роли разрядника будет использоваться один переключатель – его не нужно будет нажимать. А другой для коммутации.
Что нужно для сборки?
— Аккумуляторы 3,7 В – aliexpress
— Корпус – aliexpress
— Преобразователь высокого напряжения – aliexpress
— Переключатели две штуки – aliexpress
— Супер клей.
— Горячий клей.
Сборка
Берем корпус и сверлим отверстия под переключатели. Один с низу, другой с верху. Теперь делаем катушку. Наматываем по периметру корпуса. Витки фиксируем горячим клеем. Каждый виток отделен друг от друга. Катушка состоит из 5 витков. Собираем все по схеме, припаиваем элементы. Вставляем изоляционную прокладку между контактами высоковольтного выключателя, чтобы искра была внутри, а не снаружи. Закрепляем все детали внутри корпуса, закрываем крышку корпуса.
Требования безопасности
Будьте особо осторожны – очень высокое напряжение! Все манипуляции со схемой производите только после отключения источника питания.
Не используйте этот электромагнитный уничтожитель рядом с медицинским оборудование, или другим оборудованием, от которого может зависеть человеческая жизнь.
Результат работы магнитной пушки
Пушка лихо вышибает почти все чипы, конечно есть и исключения. Если у вас имеются ненужные электронные устройства можете проверить работу на них. Уничтожитель электроники имеет очень маленький размер и спокойно умещается в кармане.
Проверка на осциллографе. Держа щупы на расстоянии и не подключая, осциллограф просто зашкаливает.
Испытания
Выводим из строя мигающий светодиод со встроенным контроллером.
Ломаем микроволновую печь.
Видео инструкция сборки.
Первая реально действующая пушка Тесла
Электрические пушки действовали во многих фантастических произведениях. Модифицированные экземпляры встречались даже в космических операх. Но лучше всех с сегодняшним гаджетом, пусть и заочно, знакомы любители стимпанка. В мирах, где сплетаются магия и техника, таких штуковин пруд пруди. Там обычно напряженка с чистой водой и свежими простынями. В книжках и комиксах из подобного оружия стреляют все, кому не лень. В принципе, если бензин еще не изобрели, паровая тяга используется повсеместно, а многочисленные «чудовища из подземных измерений» прут со всех сторон, у хороших парней не остается иного выхода, как обратиться за помощью к Науке. Некоторые обращаются к магии, но они нам сегодня не интересны.
Итак, что может предложить наука борцам за правое (или просто, свое) дело? Что-нибудь с бесконечным боезапасом, с перемигивающимися лампочками и, естественно, очень убойное, чтоб два раза не ходить. В естественной среде обитания стимпанковских ученых, не познавших еще всей прелести мирного атома, есть только один ресурс, на основе которого можно построить что-то подобное. Это электричество. Откуда ученые будут его получать — ловить молниевыми ловушками или мастерить портативные динамо — это вопрос второстепенный. Главное, чтоб на выходе разряд был мощнее!
Общее название такого оружия — оружие Тесла. По имени предложившего концепцию действия Николы Тесла. До сих пор производство рабочей модели не удавалось по причине громоздкости составных частей и трудоемкости. Но вот некто Роб Фликенджер (Rob Flickenger ), вдохновленный графическими стимпанк-новеллами, решил смастерить электрическую пушку самостоятельно. В его планы входило не столько создать красивенький показушный пистолетик для фестивалей, сколько настоящий действующий экземпляр для… уж не знаю, для чего ему оно потребовалось.
Конечно, проделать такую работу в гараже и в одиночку было бы сложновато. Но Робу подфартило иметь связи в мире высоких технологий и доступ к этим самым технологиям. Взяв за основу игрушечный пистолет, изобретатель сделал его копию из алюминия. Далее, надо было сделать сам разрядник. Для этого Робу пришлось использовать 3d-принтер для конструирования форм и заливать их керамической смесью. Конечно, в процессе работы прибор будет сильно нагреваться, поэтому предусмотрен и вентилятор, работающий нон-стоп для охлаждения электродов.
Первая мысль, которая приход в голову при виде работы пушки — это сколько же электричества оно должно потреблять! А вот и не угадали! Работает пушка от 18-ти вольтовой батарейки из шуруповерта, весь фокус — в повышающем преобразователе. Так что на выходе получается действительно 20000 (!) вольт.
Чтобы хоть как-то скомпоновать собранные электрические части вместе, Роб поместил их в обрезок водопроводной трубы. Обязательным компонентом являются конденсаторы. В этом изделии их целая батарея. Специальный корпус для них вырезан лазером (я же говорю, что у Роба есть доступ к высоким технологиями). Далее катушка. Много-много разной проволоки и пластика для изоляции. Венчает все это великолепие алюминиевый «бублик», из которого и будут бить молнии.
Фотографии и видео работающей пушки выглядит очень красиво. Но как бы ни были красивы снимки, и как бы потрясно не смотрелся на них изобретатель с готовым изделием наперевес, очень вас просим: не пытайтесь воспроизвести этот эксперимент дома!
hackerfriendly.com