Плазменный шар своими руками схема – Создаем плазменный шар – лампа Тесла из простой из лампочки

Содержание

КАК СДЕЛАТЬ ПЛАЗМЕННЫЙ ШАР

Это устройство не имеет конкретного применения и служит исключительно для развлечения, или как стильное украшение. Схема построена на базе популярной микросхемы NE555, которая работает как генератор частоты и регулирует открывание выходного транзистора. В качестве создателя высокого напряжения работает трансформатор ТВС из старого телевизора, у которого первичная обмотка заменено несколькими витками толстого провода. 

Электрическая схема генератора для плазменной лампы

Электрическая схема генератора для плазменного шара

К разъему ZAS подключен трансформатор питания устройства. Напряжение БП выпрямляется с помощью выпрямительного моста Br1 (4 А) и фильтруется конденсаторами C1 (100nF) и C3 (4700uF), а затем используется для питания первичной обмотки трансформатора высокого напряжения. Остальная часть схемы подключается через стабилизированный блок питания на микросхеме U2 (7812) и конденсаторах C4 (100nF), C5 (100nF). М/с U1 (NE555) вместе с другими элементами представляет собой генератор прямоугольных импульсов переменной частоты и скважности. Изменения этих значений делаем потенциометрами PR1 (100k) и PR2 (100k). Напряжение с выхода генератора поступает на транзистор Т1 (IRF840) управляющий первичной обмоткой трансформатора высокого напряжения.

Сборка генератора

Электрическая схема генератора для плазменного шара

Этот генератор для плазменной лампы можно и даже нужно спаять на плате (навесной монтаж может коротнуть случайно) - вот файл. Сборка не сложная даже для начинающих радиолюбителя, а порядок пайки элементов произвольный. Транзистор Т1 следует оборудовать радиатором, а пути на плате, через которые будут протекать большие токи, хорошо бы покрыть толстым слоем припоя. В роли трансформатора высокого напряжения должен использоваться ТВС из старого кинескопного ТВ, его первичная обмотка - 10 витков толстого провода. К выходу катушки высокого напряжения необходимо припаять лампочку накаливания любой мощности (можно и неисправную).

Электрическая схема генератора для плазменного шара

Настройка схемы и возможные неполадки

Если на выводе 8 микросхемы 555 нет 12 Вольт, то проблему ищите в стабилизаторе БП. При настройке замените трансформатор на какой-то с более низким напряжением или подключите все к регулируемому стабилизированному блоку питания на время тестов. Трансформатор выбирайте какой попадётся - в пределах 12-24 В и мощностью 50-100 ватт.

Внимание! Из-за риска повреждения электронного оборудования, плазменную лампу не включайте возле телефона, компьютера и другой нежной электроники.

   Форум

   Обсудить статью КАК СДЕЛАТЬ ПЛАЗМЕННЫЙ ШАР


Простой плазменный шар из лампочки

Плазменный шар — 25 Февраля 2013

На таймере 555 серии есть море интересных и простых радиолюбительских конструкций. Одной из таких конструкций является обратноходовый или однотактный преобразователь напряжения. Конструкция самого преобразователя достаточно проста и надежна в работе.

Внутри микросхемы нет дополнительного усилителя по напряжению, поэтому выходной сигнал микросхемы нужно дополнительно усилить.

В качестве усилительного каскада использована комплементарная пара отечественных маломощных транзисторов серии КТ3102 и КТ3107, хотя можно и использовать более мощные пары, например КТ814 и КТ815, КТ816 и КТ817. Без усилителя, напряжения на выходе микросхемы может быть недостаточным для срабатывания полевого транзистора.На конденсаторе 68нФ  и резисторе 120 Ом собран фильтр для гашения обратного напряжения. Без фильтра может из строя выйти мосфет.

Резистор фильтра желательно использовать с мощностью 1-2 Ватт, его номинал можно отклонить в ту или иную сторону на 10%, на работу устройства это не повлияет.

Диод КД212 можно заменить на импортный быстродействующий диод серии UF4007.В схеме можно использовать полевой транзистор IRF3205 илиIRL3705, заранее укрепленный на теплоотвод. В ходе работы резистор 120 Ом и полевой транзистор должны греться, это вполне нормально.

В качестве трансформатора использован строчник — трансформатор от строчной развертки отечественного телевизора, трансформатор буквально любой. Вторичная обмотка заводская, а первичную  придется мотать самим — 5 витков провода с диаметром 1.5-2мм, для удобства обмотка намотана двумя жилами многожильного провода в силиконовой изоляции.

В качестве шара использована обыкновенная лампа накаливания (мощность не важна), лампы можно использовать как рабочие, так и вышедшие из строя.

Внимание! Не советуется долго играть с плазменным шаром, иногда температура дуги расплавляет стеклянную оболочку лампы, тогда вы рискуете получить удар тока в 2-4 киловольт и с нешуточной силой тока в 90 мА! Это может привести к очень серьезным последствиям. Ни в коем случае не дотрагивайтесь концов вторичной обмотки строчника, это смертельно опасно!. Видео работы:

Видео работы:

https://youtube.com/watch?v=F6Sj-BtthvM

Обсудить на Форуме

Плазменная лампа — как её сделать

Хитроумные изобретения всегда заинтересовывают простых людей. То ли это сложный механизм, то ли что-то необычное, все равно всегда с увлечением можно смотреть на их работу. Иногда возникает идея о создании своего проекта. Ведь это так интересно! Сегодня популярным девайсом можно считать так называемый шар с молниями, по-другому — плазменная лампа. Выглядит такое изобретение очень эффектно. Поэтому немудрено, что многие самоделкины пытаются самостоятельно соорудить плазменную лампу. В теории нет ничего сложного, но как её сделать на практике?

Компоненты

Первый вопрос, который надо решить: «Что понадобится при создании этого агрегата?» Ведь плазменная лампа не валяется в гараже!

Для шара молний понадобится несколько важных компонентов. Первый – это обычная лампа накаливания. Чем больше она в размерах, тем дольше можно наблюдать разряды. По поводу вольтажа: тут он особой роли не играет. Ну, если придираться, то лампа на сто ватт сгодится отлично. Вторая деталь – плата, называемая предельным трансформатором. Этот компонент является одним из главных в данной схеме. От него будет зависеть все. Где можно найти такую плату? Для этого не нужно далеко ходить. Любой старый ламповый монитор от компьютера или «толстый» телевизор оснащен этой платой. Третий компонент – корпус. О нем заботиться не стоит, так как оболочка не влияет на работу плазменной лампы. Но для соблюдения техники безопасности, да и в целях эстетики картонный, деревянный или пластмассовый корпус не помешает. Также стоит знать об инструментах. Главным помощником при создании станет паяльник. Благодаря ему схема плазменной лампы сможет соединиться.

Правила безопасности

Соблюдение простых правил поможет уберечь себя и окружающих от непредвиденных травм. Следует помнить, что электрический ток – это не игрушка. Первое правило очень простое: к оголенным проводам голыми руками не прикасаться. Контакт производить только при помощи изолированных инструментов. Второе правило также касается проводов.

Только теперь стоит позаботиться о жизнеспособности схемы. Нужно располагать оголенные провода так, чтобы они при случае не касались друг друга. Иначе возможно краткое замыкание, которое приведет к неприятным последствиям

И еще одно важное правило, относящееся в большей мере к любителям попить кофе или чай во время работы. Очень не рекомендуется присутствие жидкостей на рабочем месте

Плазменная лампа своими руками

Итак, настало время практики, ведь плазменная лампа уже ждет. Для начала стоит достать из старого монитора нужную для проекта плату. Для этого следует снять заднюю крышку монитора. От кнопки выключения должен отходить толстый, в большинстве случаев белый проводок. Если проследить за ним далее, то он приведет к нужной плате. С помощью обычных кусачек стоит обрезать те провода, что мешают достать преобразователь. Они не нужны, поэтому работать можно грубо. Если все получилось, то можно переходить на следующий, более ответственный уровень. В дело вступает паяльник, потому что теперь задача номер один – припаять провода питания. Если перевернуть плату вверх ногами, то сбоку можно увидеть два черных проводка. Их нужно очистить от изоляции и подготовить к дальнейшему процессу.

Шнур питания стоит припаивать очень аккуратно, так как провода, отходящие от платы, очень тонкие. Одно неловкое движение, и можно испортить всю работу. После окончания место спайки нужно качественно обмотать изоляционной лентой. Но рано оставлять паяльник

Этот инструмент поможет еще в одном важном деле

Сама лампа еще не присоединена к цепи. Для неё остался последний, самый толстый провод. Его также нужно припаять, только теперь к лампочке. Вот почти все приготовления окончены. В подготовленный корпус стоит поместить все устройства так, чтобы сверху осталась одна лампа. Тревожный момент – время проверки. Шнур питания вставляем в розетку, палец – на стекло. Если внутри появились молнии, значит, всё сделано правильно.

Проект

Как сделать плазменную лампу? Теперь этот вопрос не приведет в растерянность. Каждый, кто увлекается инженерией, просто обязан смастерить данный девайс. Он не только позволит не скучать, но и станет трофеем, который будет украшать почетный ряд изобретений.

Плазменный светильник обзор товара

Приветствуем Вас, наши дорогие покупатели и желаем всем доброго здоровья и приятных подарков! Сегодня мы расскажем о необычном предмете интерьера -это плазменный светильник «Магический шар», который также можно найти в интернете по запросам: плазма шар, шар Тесла, домашняя катушка Теслы, «шар с молниями», ну и собственно «магический шар». Почему мы склоняемся к названию «магический шар»? Как ни странно, но в последнее время подавляющее большинство покупателей этого девайса, составляют всевозможные работники магических салонов, гадалки и, великие и ужасные «маги и чародеи».

И это не случайно,испокон веков центральным предметом любого «волшебного» салона являлся хрустальный шар, в котором гадалки и предсказатели, якобы, видели прошлое и будущее человека. Раньше это были обычные шары из стекла или хрусталя, чаще сплошные, иногда полые, которые некоторые предприимчивые «маги» перед сеансом наполняли дымом и затыкали пробкой. В наши же дни, для создания атмосферы мистики и всепронизывающей магии всё чаще используются именно плазменные шары. Согласитесь, разноцветные всполохи молний переливающиеся в хрупком сосуде, выглядят куда как эффектней обычной стеклянной сферы и позволяют «окучивать» клиента на более профессиональном уровне.

Изобретение плазменного светильника и принцип работы.

Давайте разбираться что это за чудо-шар такой и откуда он появился. Изобретение плазма шара приписывают выдающемуся физику и ученому Николе Тесла (1856-1943 г.г.). В 1894 году Тесла подробно описал устройство плазменной лампы, состоящей из стеклянной колбы и электрода, на который подавался переменный ток, в результате чего, на его конце возникало свечение. Тесла назвал своё изобретение «Одноконтактная лампа» или «Газоразрядная трубка». В те времена это не выглядело так эффектно как сегодня, потому как технология использования инертных газов была ещё не доступна. Свой современный вид плазма-шар получил благодаря другому изобретателю Джеймсу Фалку, который уже в 70-х годах нашего века, конструировал необычные светильники, в принципе работы которых лежали разработки Теслы, и продавал их в научные музеи и коллекционерам. В наши дни пространство между внешней колбой и электродом заполняют инертным газом, благодаря чему и создаётся эффект непрерывного пульсирования разноцветных молний.

Плазма-шар в подарок.

Шар Теслы — это идеальный подарок. Ведь его завораживающая красота придется по вкусу всем без исключения, независимо от пола и возраста. Взрослым будет приятно украсить дом стильным и необычным предметом интерьера, а дети очень любят трогать поверхность шара и любоваться миниатюрными молниями, бьющими в место соприкосновения с рукой. Мерное, успокаивающее свечение, окажет благоприятное воздействие на нервную систему и поможет снять усталость после тяжёлого трудового дня. А ещё, с помощью магического шара, можно показывать детям фокусы и проводить вместе с ними различные физические опыты, например такие как в этом видео.

Нас часто спрашивают, опасны ли магические шары для окружающих, а особенно для детей

Отвечаем — нет, не опасны, нужно лишь соблюдать несколько основных правил предосторожности:

  • Не подносить к поверхности шара электронные и радио устройства ( мобильные телефоны, плееры тачпады и т.д.)
  • Не класть на поверхность шара металлические предметы ( за исключением случаев, когда это необходимо для опытов)
  • Не прикасаться одновременно к поверхности шара и заземлённому объекту (батарее например)
  • Естественно, не стучать по шару и не ронять его.
  • Рекомендуется отключать светильник на 10-15 минут, через каждые 3-4 часа непрерывной работы.

Итак

Плазменный светильник «Магический шар» — вещь очень необычная и притягивающее внимание. Он будет отличным подарком для Ваших друзей, шикарным предметом интерьера в Вашем доме и увлекательным развлечением для Ваших детей..

и…

=) домашних питомцев =).

Плазменный шар своими руками Мастер-класс своими руками

В роли нашего плазменного шара будет обычная лампа накаливания, ну а источник высокого напряжения высокой частоты довольно прост. Кроме того из нашего источника можно построить не только плазменный шар, но и демонстрировать красивые эксперименты с высоким напряжением: дуговые и коронные разряды, лестница Иакова, лампа дневного света, загорающаяся в руке и т.п.

Источник высокого напряжения высокой частоты

Назначение

Демонстрация красивых экспериментов с высоким напряжением: дуговые и коронные разряды, лестница Иакова, лампа дневного света, загорающаяся в руке и т.п.

Краткое описание

Основной элемент — ТВС (Трансформатор Выходной Строчный). Благодаря оригинальной автогенераторной схеме удалось получить напряжение около 90 кВ, высокие мощность, надежность и КПД. Схем генератора на строчнике — блокинг-генератор — приведена ниже:

В этой схеме используется переделанный трансформатор от лампового телевизора ТВС-110Л6 или ТВС-110ЛА. Первичную обмотку снимают и заменяют самодельной, с небольшим числом витков. Выпрямительный блок вольт на 12 и ток до 5 ампер. Витки ТВС где-то 1-2 = 5 витков, 3-4 = 25 витков провода диаметром 1мм. Вообще всё подбирается экспериментальным путём.

Транзистор по мощней типа кт 927 или любой другой с хорошим коэффициентом усиления и мощности.

Собранная схема может выглядеть так:

Или так :

На базе данного преобразователя можно провести свои первые опыты в области высокого напряжения. Это и маленькие лестницы Иакова, ионный двигатель, получение озона, электроподжиг, поджигание дуги, которой можно легко прожечь стекло, и многое другое.

Наша задача — построить плазменный шар. Для этого мы берём лампу накаливания  и подключаем к ней выход трансформатора.

Разряд в лампе накаливания, первый электрод — палец, второй — спиралька внутри. Внутри колбы не вакуум, а газ аргон, под низким давлением:

БУДТЕ ОСТОРОЖНЫ ! ВЫСОКОЕ НАПРЯЖЕНИЕ ОПАСНО ДЛЯ ЖИЗНИ !!!!

УДАЧИ ВАМ !

Плазменный шар

Схематическое изображение потоков энтропии в неравновесной системе М. а — монотонное возрастание внутренней энтропии 5. б — при наличии связей TV часть энтропии S / убывает на общем фоне возрастания энтропии S. в — если есть отток энтропии во внешнюю систему, то убывание части энтропии системы S, может обеспечиваться за счет негэнтропии ( информации внешней среды.

Плазменный шар превращает часть хорошо организованной электрической энергии в тепло, которое рассеивается затем в окружающем пространстве. Внутри шара все время рождается энтропия, которая вытекает затем вместе с теплом в окружающее пространство. Из плазменного шара все время нужно удалять шлак из вновь рождаемой энтропии: образно говоря, в него нужно вводить энтропию с обратным знаком.

При взрыве ядерного заряда образующийся плазменный шар расплавляет окружающие горные породы.

При взрыве ядерного заряда образующийся плазменный шар расплавляет и разрушает окружающие горные породы. При мощности ядерного взрыва, равной одной килотонне, выделяется около 418 — Ю5 МДж энергии, что эквивалентно энергии взрыва приблизительно 1000 т тротила.

Схема последовательности работ при создании хранилищ методом глубинных взрывов.

При взрыве ядерного заряда образующийся плазменный шар расплавляет окружающие горные породы.

В работе исследовалось существование плазменного шара, целиком состоящего из свободных электронов и положительных ионов, и был выполнен расчет его температуры.

Поясним, что это означает, на примере плазменного шара. Как мы видим, змейки существуют только вследствие локального разогрева газа внутри шнурового разряда. Другими словами, внутри шнура газ должен подогреться, а в целом все устройство находится при комнатной температуре, т.е. избыточное тепло передается в воздух через стеклянную оболочку. Если есть поток тепла, то это означает рождение энтропии. Плазменный шар превращает часть хорошо организованной электрической энергии в тепло, которое рассеивается затем в окружающем пространстве. Внутри шара все время рождается энтропия, которая вытекает затем вместе с теплом в окружающее пространство.

Поясним, что это означает, на примере плазменного шара. Как мы видим, змейки существуют только вследствие локального разогрева газа внутри шнурового разряда. Другими словами, внутри шнура газ должен подогреваться, а в целом все устройство находится при комнатной температуре, т.е. избыточное тепло передается в воздух через стеклянную оболочку.

Заполняющая этот объем жидкость плотностью р придет в движение, преодолевая внешнее давление рг. Образующийся в центре плазменный шар расширяется, достигает предельного размера и начинает сжиматься. Следующая за ним жидкость повторяет движение поверхности плазменного шара со скоростью, свойственной расстоянию г от центра взрыва. Охлопывание плазменного шара завершается за время Т от момента взрыва.

Многие из нелинейных систем настолько красивы, что вполне подходят для украшения интерьеров современных квартир или домов. Вот, например, устройство ( рис. 36), которое называется плазменный шар, его довольно часто можно увидеть в магазинах современных западных городов.

Плазменный шар, в котором возникают, поднимаются вверх и, попарно сливаясь, исчезают плазменные змейки тлеющего разряда.

Многие из нелинейных систем настолько красивы, что вполне подходят для украшения интерьеров современных квартир или домов. Вот, например, устройство ( рис. 15), которое называется плазменный шар, его довольно часто можно увидеть в магазинах современных западных городов.

Успехи физических наук, — описаны многочисленные типы нелинейной самоорганизации, в том числе так называемый плазменный шар. Физика процессов в таком шаре настолько интересна, внешне картина так красива, а материал изложен не иначе, как мастерски, что ниже мы просто процитируем автора.

Работы Капицы являются наиболее последовательными в плане моделирования шаровой молнии при плазменном представлении о ее природе. Утверждая, что плазма, моделирующая шаровую молнию, должна быстро распасться, Капица пришел к выводу , что энергия в плазму должна подводиться извне Его эксперименты демонстрируют такую возможность — существование светящегося плазменного шара с внешним подводом энергии. Тем самым, идея Капицы и его эксперименты являются логически замкнутыми. Другое дело, что реальность такой шаровой молнии, как показали последующие исследования, маловероятна.

Плазменный шар

Очень часто бывает так, что не новые, уже подзабытые вещи несколько обновляются и снова приобретают всеобщее внимание. Именно об одном из таких «модифицированных», подзабытых устройств и пойдет сегодня речь

Плазменные шарики в огромном ассортименте продающиеся на ВДНХ, да вообще, во многих сувенирных отделах магазинов России, не раз привлекали внимание людей занимающихся моддингом, да неверно не только их. К нам данный девайс попал из компании Megamod, собственно данная компания и является эксклюзивным поставщиков плазменных шариков для компьютеров на территории России.

Технические характеристики Plasma Ball

  • Напряжение питания – 12 В.
  • Потребляемая электрическая мощность – 3 Вт.
  • Размеры — 215×105×105 мм.
  • Вес – 0.4 кг.

Особенности: комплектуется кабелями для подключения к блоку питания ПК или прикуривателю автомобиля.

Поставляется плазмошарик в красочной картонной коробке. Никакой информации о производителе нет, знаете-ли в восточных странах как-то не принято выпендриватьсяJ.

Внутри коробки все упаковано очень надежно, с двух сторон девайс плотно закрывают куски пенопласта.

Основным элементом конструкции Plasma ball является стеклянная колба, видимая часть которой представляет собой сферу. Основание, скрывающее в себе несложную элетронику, изготовлено из полупрозрачного пластика и подсвечивается неоновым кольцом – моддеры оценят.

На корпусе расположен разъем для подключения питания, и трехпозиционный выключатель для переключения режимов offon audio. Последний это обычная звуковая активация знакомая моддерам по неоновым лампам – шар будет вспыхивать, к примеру, в такт музые, или любым достаточно громким низкочастотным звукам. Чувствительность микрофона никак регулировать нельзя, досадный факт.

После включения плазменного шарика между сердцевиной расположенной в центре сферы и стенками самой сферы начинают бегать множество электрических зарядов, которые можно сравнить с миниатюрными непрерывными молниями. Света мало от такой игрушки, но как подсветка она и не позиционируется.

Интересная деталь: если во включенном состоянии дотронуться до стекла рукой, да или любым предметом, разряды начнут как бы подтягиваться к месту прикосновения. Этими манипуляциями можно заниматься часами, очень рекомендуется нервным моддерам, шарик может за 15-20 минут успокоить расшатавшиеся нервы. Помимо всего этого шарик при работе вырабатывает азон, а значит если вы установите его внутри корпуса, вы получите отличный кондиционный воздух.

Заключение

От большинства аналогов описанный Plasma ball отличается возможностью «прямого» подключения к компьютеру. Никаких помех или наводок, при работе внутри корпуса компьютера плазменный шарик не вызывает, по крайней мере тот который попался нам на обзор, видимо все же сказываются электрические показатели, 12В. вряд ли могут вызывать серьезные наводки и помехи на электронику.

Принцип работы

Ёмкостная лампа состоит из:

  • газоразрядной трубки, внутренняя поверхность которой может быть покрыта люминофором для получения видимого света;
  • двух электродов (обкладок), между которых расположен баллон лампы;
  • электронного генератора высокочастотного напряжения для запитки электродов;
  • для уменьшения излучения высокочастотного поля конструкцию могут снабжать сетчатыми или сплошными проводящими экранами, что улучшает электромагнитную совместимость.

Электронный генератор вырабатывает высокочастотное напряжение, создающее переменное электрическое поле между электродами. При достижении напряженности электрического поля в газе, достаточной для электрического пробоя, газ превращается в низкотемпературную плазму. Так как плазма хорошо проводит электрический ток, в газовой полости лампы начинает выделяться энергия от протекания электрического тока и поддерживается устойчивый плазменный шнур.

Возбуждённые электрическим разрядом атомы газа, наполняющего полость лампы, излучают фотоны с длинами волн, характерными для атомов наполняющего лампу газа (эмиссионные линии спектра). Обычно эти лампы наполняют смесью аргона с парами ртути. Аргон добавляют для облегчения зажигания лампы при низких температурах, когда давление паров ртути недостаточно для возникновения газового разряда. Атомы ртути в газовом разряде ярко излучают в эмиссионных линиях в невидимой глазом ультрафиолетовой части спектра. Если необходимо, ультрафиолетовое излучение атомов ртути преобразуется в видимое излучение посредством люминофора, нанесённого на внутреннюю поверхность стеклянной трубки лампы. Такие лампы можно отнести к люминесцентным лампам.

Многие лампы с внешними электродами не имеют люминофорного покрытия и излучают наружу только тот свет, который излучается ионизированным газом (плазмой). Такие лампы относятся к газосветным лампам.

Основное преимущество ламп с внешними электродами над газоразрядными лампами с электродами — длительный срок службы и высокая стабильность параметров. Это вызвано тем, что внутри лампы нет металлических деталей, способных разрушаться под ударами ионов и электронов и изменять состав газовой среды.

Меры предосторожности

Касание плазменной лампы рукойПри обращении нужно соблюдать меры предосторожности: если на плазменную лампу положить металлический предмет, вроде монеты, можно получить слабый , при условии, что человек заземлён.

Значительное может лампой в проводниках даже сквозь непроводящую сферу. Прикосновение одновременно к лампе и к предмету, например, к батарее отопления приводит к удару электрическим током.

Аналогично, надо стараться не помещать электронные приборы рядом с плазменной лампой. Это может привести не только к нагреванию стеклянной поверхности, но и к существенному воздействию переменного тока на сам электронный прибор.

, создаваемое плазменной лампой, может наводить помехи в работе таких приборов, как цифровые аудиопроигрыватели и подобные устройства. Если к работающей плазменной лампе на расстоянии 5—20 см держа в руке поднести , (в том числе и неисправную, но не разбитую) или любую другую лампу, то она загорится.

Страничка эмбеддера Плазменный шар

Однажды мне посчастливилось приобрести на развалах колбу от китайского плазменного шара. Электроника шара сгорела, а корпус выбросили. Вообщем, ничто не ограничивало полет моей фантазии.

Выношу на общественный суд мою конструкцию и электронику для плазменного шара.

Электроника шара в моем исполнении довольно проста – это полумост на одной микросхемке. В качестве трансформатора я использую строчник ТВС-110ПЦ15 со штатными обмотками, тоесть ничего своего не мотаю, и это хорошо.

Не смотря на простоту, и тут есть несколько граблей, на которые можно наступить, их я и хочу обсудить. Перед тем, как обсуждать, впрочем, вам нужно посмотреть схему:

В схеме две неочевидных вещи.

Первая – “молнии” в плазменном шаре – это ток. Ток должен течь откуда-то и куда-то, то есть образовывать замкнутый контур. Надеюсь, этот рисуночек поможет понять о чем это я. Голубым обозначен контур, по которому должен протечь ток. Куда утекает ток, мы знаем — он через емкость шар-земля утекает в землю. Нужно теперь придумать как его из земли забирать (замыкать контур). Проще всего для этого использовать заземление, однако заземление не всегда доступно в наших суровых пост-советских реалиях. Поэтому нужно сделать свое, виртуальное, заземление.

На схеме для этого используются конденсаторы C1 и C2, которые обладают значительно меньшим импедансом (сопротивлением), чем конденсатор шар-земля. Один из проводов в розетке всегда соединен с землей, но мы не знаем заранее, который поэтому используем сразу оба.

Возникает вопрос —  если шар и его молнии остаются связанными с розеткой, не ударит ли нас, когда мы прикоснемся к шару? А если друг, случайно, один из этих конденсаторов (С1 или С2) выйдет из строя, что тогда? Ударит?

Во-первых конденсатор емкостью 2.2нФ не способен пропустить через себя ток, достаточный чтобы навредить человеку. На схеме написан квалификатор конденсатора – Y2. Конденсаторы с таким обозначением во-первых очень сложно вывести из строя, а во-вторых, они гарантированно разорвут цепь если что-то пойдет не так.

Вторая неочевидная вещь в схеме была связанна с резистором питания микросхемы – R2. В даташите ничего толкового я не нашел, поэтому пришлось его подбирать. 180кОм – это максимальное сопротивление из стандартного ряда, при котором схема работала стабильно. Если у вас стримеры будут мерцать, нужно будет уменьшить это сопротивление.

Теперь про конструкцию. В качестве первичной обмотки я использовал выводы 12 и 9 строчника ТВС-110ПЦ15. Где расположены эти выводы можно увидеть на картинке

Оранжевй провод – идет к виртуальному заземлению, белый и фиолетовый – первичка, синий – высоковольтный

Я сделал рабочую частоту полумоста равной 30кГц. Потому как чем меньше частота, тем меньше энергопотребление. Для того, чтобы на выходе напряжение было побольше, я заставляю строчник работать в резонансе. Резонанс подбирается конденсатором С9. Его, кстати, лучше поставить на напряжение не меньше 620В. Подбирать резонанс можно и частотой (вместо резистора R3 поставить подстроечник, к примеру), но при изменении рабочей частоты меняется потребление и схема может начать работать нестабильно.

Механика тоже довольно проста. В качестве корпуса я использовал редуктор от вентиляции. Такие можно найти практически в любом строительном магазине. Все узлы держатся на трении. Для того, чтобы фанерка не вставлялась дальше, чем нужно, я приклеил деревянные брусочки-ограничители. Провод питания посадил на скобы и облил термоклеем, чтобы и не думал вырываться.

А вот с колбой пришлось немного помудрить. Во-первых, колбе обязательно нужна металлическая поверхность снизу, иначе “молнии” начинают бить исключительно вниз. Металлическая поверхность приобретает тот-же заряд, что и молнии и отталкивает их. Естественно, эта поверхность должна быть соединена с высоковольтный проводом.

Для удержания колбы, я вырезал деревянный кружек, который очень плотно входит в корпус, и не требует дополнительной фиксации. В разобранном виде колба получилась вот такой:

После сборки дрожащими руками всовываем вилку в розетку, ииии…. Видем красивый плазменный шарик!

 

На последок, поделюсь печатной платой. Плата отзеркалена.

Создаем плазменный шар – лампа Тесла из простой из лампочки

Вы когда-нибудь видели плазменную лампу? А может хотели собрать свой собственный шар с молниями внутри? В этой инструкции я покажу вам, как сделать лампу тесла из обычной лампочки!

Прежде чем мы создадим этот проект, я должен предупредить вас о безопасности.

Это устройство выдает высокое напряжение — до 25 000 вольт и может вас убить. НЕ ЗАМЕНЯЙТЕ НИКАКИЕ КОМПОНЕНТЫ ИЛИ ЧАСТИ КОМПОНЕНТОВ НА ДРУГИЕ ЧАСТИ С ИНЫМИ ПОКАЗАТЕЛЯМИ! Это важно для вашей безопасности. Еще, прежде чем создавать этот проект, я бы порекомендовал вам провести кое-какие исследования о высоких напряжениях. Также имейте в виду, что это не проект начального уровня, и вам нужно будет иметь опыт работы с обратными трансформаторами, высокими напряжениями и смертельными токами.

Вы были предупреждены.

Шаг 1: Методы: 1 и 2

Есть два способа сделать плазма лампу. Оба используют трансформаторы обратного хода переменного тока, но используют разные драйверы. Это важно знать, потому что вы будете создавать драйвер самостоятельно и должны выбрать свой метод, основываясь на нескольких факторах.

Метод 1 использует таймер 555 для включения и выключения мосфета. В нём используется меньше компонентов и его легче собрать.

Метод 2 использует чип TL494, который можно купить онлайн. Этот метод более сложный, но он дает вам больше контроля над схемой и позволяет даже вводить аудио.

Для начинающих я рекомендую метод 1, потому что в нём легче получить желаемую частоту. Если вы используете правильные компоненты, то частота установлена на безопасное значение. Это важно, потому что, если частота слишком низкая, вы словите неприятный шок. В конце этой инструкции я покажу 2 видео, в которых рассказывается, как настроить драйвер так, чтобы дуги были безопасны в работе.

Шаг 2: Метод 1: компоненты

Чтобы сделать лампу Tesla, нам нужен высокочастотный источник питания переменного тока. Также будет хорошо, если частоту можно будет регулировать для улучшения дуги. Мы будем делать наш собственный трансформатор обратного хода. Однако этот шаг можно пропустить, если у вас есть трансформатор обратной связи переменного тока.

Для драйвера:

  • чип 555
  • потенциометр 22к
  • резистор 10к
  • резистор 56 Ом
  • конденсатор 2,2 нф
  • регулятор напряжения 7809
  • зеленый светодиод
  • резистор 680 Ом
  • МОП-транзистор с N-канальным питанием (IRFP250, IRFP260, IRFP450 и т. д.)
  • Источник постоянного тока 12-24 В при 3 А или более (у меня напряжение 12 В при 18 А)

Для трансформатора:

  • обратный трансформатор
  • 30 метров магнитного провода 30 калибра (0,255 мм)
  • 30 см магнитного провода 22 калибра (0,644 мм)
  • Электроизоляционная лента
  • Тефлоновые ленты
  • Для корпуса
  • Коробка проекта
  • Различные винты и гайки
  • Сверла
  • 60 ваттная лампочка

Как видите, в этом проекте есть разные шаги. Я предполагаю, что у вас нет обратноходового преобразователя переменного тока. Преобразователи от современных телевизоров, компьютерных мониторов и других устройств — для постоянного тока, потому в них встроен внутренний диод, который выпрямляет импульс обратного хода. Если вы можете найти портативный мини телевизор, скорее всего, вы найдёте вариант AC, и сможете использовать его. Но самое интересное в этом проекте — это намотка собственного трансформатора, поэтому я проведу вас по всем шагам.

Шаг 3: Собираем драйвер

Здесь особо нечего сказать. Просто убедитесь, что вы правильно установили соединения на чипе 555. Пока не беспокойтесь о подключении первичной обмотки, мы вернемся к этому после сборки трансформатора.

Шаг 4: Метод 2: компоненты

Чтобы сделать плазменный шар, нам нужен высокочастотный источник питания переменного тока. Также будет нужно, чтобы частота была настраиваемой, чтобы получить лучшую дугу и самый чистый звук. Мы будем делать наш собственный трансформатор обратного хода.

Для драйвера:

  • ШИМ TL494
  • потенциометр 10к
  • потенциометр 22к
  • резистор 2.2к
  • резистор 10 Ом
  • 100 нф конденсатор
  • 10 нф конденсатор
  • 47 нф конденсатор
  • 200 мкФ конденсатор
  • МОП-транзистор с N-канальным питанием (IRFP250, IRFP260, IRF540, IRFP450, IRFP064 [я использую такой])
  • UF4007 или быстрый диод
  • аудио разъем-папа
  • регулятор напряжения 7812
  • Источник постоянного тока 12-24 В при 3 А или более
  • Обратноходовой преобразователь переменного тока (домашние не очень хорошо работают)

Для корпуса

  • Коробка проекта
  • Различные винты и гайки
  • Сверла
  • 60 ваттная лампочка

Как видите, у этого метода много дополнительных частей. Другим недостатком является то, что большинство самодельных преобразователей, которые я пробовал, не работают с этой схемой. Но если вы все же хотите попробовать сделать самодельный преобразователь, переходите к следующему шагу.

Шаг 5: Создаём преобразователь

Части:

  • обратный трансформатор
  • 30 метров магнитного провода 30 калибра
  • 30 см магнитного провода 22 калибра
  • Электроизоляционная лента
  • Тефлоновые ленты

Что такое обратноходовой трансформатор?

Обратноходовой трансформатор — это трансформатор, который можно найти в ЭЛТ-мониторах и телевизорах. Он используется для создания высокого напряжения и генерирования электронного луча для проецирования изображений на экран. Вы можете легко выпаять такой из телевизора или ЭЛТ-монитора при помощи паяльной лампы.

Посмотрите на обратноходовой трансформатор, который у вас на руках. Вам нужно получить ферритовый сердечник. Ферритовый сердечник — это оголенный стержень феррита, который соединяется внутри с трансформатором. Для этого попробуйте несколько раз ударить по ферритовому сердечнику резиновым молотком. Если это не поможет, погрузите трансформатор в горячую воду и попытайтесь ослабить лак, удерживающий сердечник на месте. Как только вы сможете покачивать сердечник, попробуйте удалить металлическую скобу, которая удерживает его на месте. Как только это будет сделано, две части сердечника должны выпасть из трансформатора.

Вы на полпути! Далее, посмотрите, насколько большой ваш сердечник. Самые большие сердечники обычно находятся в больших телевизорах, но я использовал самое маленькое ядро, которое смог найти, чтобы сэкономить место. Мы ищем вариант примерно на 10000 вольт.

Затем возьмите картонную карточку и загните ее в трубку, которая может поместиться вокруг цилиндрической стороны вашего сердечника.

Я нарисовал диаграмму, чтобы всё было наглядно.

Затем начните наматывать проволоку 30 калибра вокруг трубки. Начните намотку на расстоянии примерно 1,5 см от края бумаги, потому что намотка, расположенная слишком близко к сердечнику, приведет к дуге. Обмотайте провод вокруг трубки, убедившись, что мотки плотно прилегают друг к другу и не перекрываются. Наматывайте, пока вы не достигнете 1,5 см до конца бумаги. Затем поместите кусок изоленты поверх края обмотки. Оберните обмотку большим количеством тефлоновой ленты и накройте ее слоем изоленты.

Затем начните наматывать второй слой поверх предыдущего. Обмотайте примерно на 5 оборотов меньше, остановитесь, закройте тефлоном и изолентой и запустите новый слой, который намотайте поверх предыдущей намотки. Делайте это до тех пор, пока у вас не останется места. На последней обмотке заклейте всю вторичную ленту большим количеством изоленты.

Для первичной обмотки сделайте 7 витков проводом 22 калибра вокруг другой стороны сердечника. Готово!

Шаг 6: Тестирование трансформатора и его подготовка

Подсоедините трансформатор к схеме и проверьте его. Возьмите карандаш с проволокой, прикрепленной к нему. Подсоедините один конец провода к одному концу вторичной обмотки. Затем подключите источник питания 12-24 В к входу драйвера. Встряхните его.

Способ 1:

Если вы слышите шум, значит, он работает. Медленно соедините вторичные провода вместе, используя карандаш. Фиолетовая электрическая дуга должна прыгать с одного конца на другой. Если всё так, то попробуйте отрегулировать 22к потенциометр, чтобы изменить частоту и получить тихую толстую дугу.

Если у вас не получилось, то есть несколько вещей, которые могут пойти не так:

Ваша вторичная катушка дает внутреннюю дугу. Вы должны перемотать вторичную катушку и использовать больше изоляции.

Работает и внезапно останавливается:

  1. Ваш мосфет может быть неисправен. Проверьте его на короткое замыкание с помощью мультиметра.
  2. Ваш чип 555 сгорел. Замени его.

Ничего не происходит при включении драйвера. Возможно, вы неправильно прочитали схему. Проверьте все соединения.

Способ 2:

Если вы слышите шум, значит, все работает. Медленно соедините вторичные провода вместе, используя карандаш. Фиолетовая электрическая дуга должна прыгать с одного конца на другой. Если всё так, попробуйте отрегулировать оба потенциометра, чтобы изменить частоту и рабочий цикл. Попробуй получить тихую толстую дугу. При желании вы можете подключить музыкальный проигрыватель к аудиоразъему и проверить, будет ли дуга воспроизводить музыку. Если все это произойдет, то поздравляю! Вы почти закончили.

Если это не так, то есть несколько вещей, которые могут пойти не так.

  1. Ваша вторичная катушка дает внутреннюю дугу. Вы должны перемотать вторичную катушку и использовать больше изоляции.
  2. Работает и внезапно останавливается. Ваш мосфет может быть неисправен. Проверьте на короткое замыкание с помощью мультиметра.
  3. Ничего не происходит при включении драйвера. Возможно, вы неправильно прочитали схему. Проверьте все соединения.

Дополнительное вощение

Эта часть довольно крута. Если вы используете мелки для воска, снимите бумагу со всех мелков. Возьмите старую банку, например, консервную, и поместите мелки в неё. Поместите банку на очень слабый огонь на плиту. Растопите воск полностью. Затем возьмите кусочек алюминиевой фольги и создайте форму для вашего обратноходового трансформатора.

Попытайтесь сделать коробку, в которую поместится трансформатор. Поместите его в форму так, чтобы вторичный и первичный провода торчали вверх. Затем медленно вылейте воск на трансформатор, пока он не будет полностью погружен. Покачайте форму немного, чтобы воск просочился в отверстия в трансформаторе. Дайте коробке полежать одну ночь, чтобы всё остыло.

Когда вы вернетесь на следующий день, снимите фольгу. Вы получите блок воска с 4 торчащими проводами. Это должно помочь вашему трансформатору работать дольше и предотвратить дуги.

Шаг 7: Включаем!

Поместите металлическое основание вашей лампочки на высоковольтные выходы вашего трансформатора и включите его!
Пожалуйста, посмотрите это видео, которое поможет вам с настройкой и эксплуатацией плазменного шара:

И помните, что высокое напряжение может быть смертельным, если работать с ним неправильно. Будьте осторожны и веселой вам сборки!

Плазменный светильник из пластиковой бутылки

С помощью видео канала “Александр Полулях”попробуем сделать плазменную лампу, конструкция которой будет состоять из обычной пластиковой бутылки, а питаться он будет высоковольтным напряжением. Ее не очень сложно изготовить своими руками.

А дешево такие агрегаты продаются в этом китайском магазине.

Берем пластиковую бутылку, проделываем два отверстия в ее донышке, и также сделаем два в крышке. Из донышка такой же бутылки делаем подставку, которую приклеим таким образом, как показано в ролике. Далее в дырки нужно продеть по одному тонкому одножильному проводу без изоляции. Также эти провода просовываем через крышку. Рассчитываем, чтобы когда она закрывалась, не было замыкания. То есть нужно сначала закрутить противоположную сторону – пару витков – затем продеть внутрь отверстия, и после этого закручивать ее. По идее, они должны будут раскрутиться и не замыкать между собой.

Плазменная лампа из пластиковой

Далее на окончаниях проводов делаем узелки. В одно из этих отверстий со стороны пробки закачиваем инертный газ аргон. После продувки также заделываем герметично термоклеем. К этим проводам подсоединяем любой источник высоковольтного напряжения, и смотрим, что получается.
Смотрите плазменную эффектную лампу, созданную собственными руками на видео ниже.

Источник: Александр Полулях

Самодельный плазменный шар-светильник 

     Я уверен, что вы знаете, это интересное украшение в последние годы широко продается. Вы также можете создать простой плазменный шар самостоятельно. Основой плазменного шара является небольшой источник высокочастотного высокого напряжения в несколько тысяч вольт на частоте от нескольких до нескольких десятков килогерц. Это напряжение подается на электрод, размещенный в центре стеклянной сферы, заполненной подходящим газом. Из-за емкостных токов разряды образуются между электродом и стеклом. Когда вы дотрагиваетесь до мяча, светящиеся разряды будут в основном направлены на область, к которой вы прикасаетесь.
В моей конструкции высокочастотное высоковольтное питание очень просто. Она использует трансформатор высокого напряжения от старого телевизионного приемника. Это должен быть трансформатор без встроенного выпрямителя, чтобы иметь возможность обеспечивать высокочастотное напряжение. Первичная обмотка трансформатора удалена или оставлена ​​неиспользованной, и намотан новый первичный (5 витков и 3 витка), как показано на схеме ниже. Вторичная обмотка оставлена ​​в исходном состоянии. Другая часть схемы – это силовой транзистор и небольшая лампочка (от 24 В 5 до 10 Вт), которая служит сопротивлением и одновременно сигнализирует о включении питания (эту лампу можно заменить резистором 50-100 Ом 5-10 Вт). Эти компоненты образуют простой генератор. Конденсатор 1000 мкФ только уменьшает внутреннее сопротивление источника питания. Напряжение около 16 кВ и частота около 25 кГц. Примечание – отрицательный полюс должен быть заземлен. Плазменная лампа из пластиковой


Плазменный шар заменен обычной лампой сетевого напряжения (приблизительно 25 – 200 Вт), которая заполнена аргоном. Эффект похожий. Между нитью и колбой образуются несколько движущихся искр.

Предупреждение! Высокое выходное напряжение опасно и может привести к поражению электрическим током или ожогам. За любую травму, вызванную этим устройством, я не несу никакой ответственности. Все, что вы делаете на свой страх и риск.

Простейший самодельный плазменный шар,Плазменная лампа из пластиковой

самодельный плазменный шар, работающий с лампочкой 200 ВтПлазменная лампа из пластиковой

Страничка эмбеддера » Плазменный шар

Однажды мне посчастливилось приобрести на развалах колбу от китайского плазменного шара. Электроника шара сгорела, а корпус выбросили. Вообщем, ничто не ограничивало полет моей фантазии.

Выношу на общественный суд мою конструкцию и электронику для плазменного шара.

Электроника шара в моем исполнении довольно проста – это полумост на одной микросхемке. В качестве трансформатора я использую строчник ТВС-110ПЦ15 со штатными обмотками, тоесть ничего своего не мотаю, и это хорошо.

Не смотря на простоту, и тут есть несколько граблей, на которые можно наступить, их я и хочу обсудить. Перед тем, как обсуждать, впрочем, вам нужно посмотреть схему:

 

В схеме две неочевидных вещи.

Первая – “молнии” в плазменном шаре – это ток. Ток должен течь откуда-то и куда-то, то есть образовывать замкнутый контур. Надеюсь, этот рисуночек поможет понять о чем это я. Голубым обозначен контур, по которому должен протечь ток. Куда утекает ток, мы знаем — он через емкость шар-земля утекает в землю. Нужно теперь придумать как его из земли забирать (замыкать контур). Проще всего для этого использовать заземление, однако заземление не всегда доступно в наших суровых пост-советских реалиях. Поэтому нужно сделать свое, виртуальное, заземление.

На схеме для этого используются конденсаторы C1 и C2, которые обладают значительно меньшим импедансом (сопротивлением), чем конденсатор шар-земля. Один из проводов в розетке всегда соединен с землей, но мы не знаем заранее, который поэтому используем сразу оба.

Возникает вопрос -  если шар и его молнии остаются связанными с розеткой, не ударит ли нас, когда мы прикоснемся к шару? А если друг, случайно, один из этих конденсаторов (С1 или С2) выйдет из строя, что тогда? Ударит?

Во-первых конденсатор емкостью 2.2нФ не способен пропустить через себя ток, достаточный чтобы навредить человеку. На схеме написан квалификатор конденсатора – Y2. Конденсаторы с таким обозначением во-первых очень сложно вывести из строя, а во-вторых, они гарантированно разорвут цепь если что-то пойдет не так.

 

Вторая неочевидная вещь в схеме была связанна с резистором питания микросхемы – R2. В даташите ничего толкового я не нашел, поэтому пришлось его подбирать. 180кОм – это максимальное сопротивление из стандартного ряда, при котором схема работала стабильно. Если у вас стримеры будут мерцать, нужно будет уменьшить это сопротивление.

 

Теперь про конструкцию. В качестве первичной обмотки я использовал выводы 12 и 9 строчника ТВС-110ПЦ15. Где расположены эти выводы можно увидеть на картинке

 

 

Оранжевй провод – идет к виртуальному заземлению, белый и фиолетовый – первичка, синий – высоковольтный

Я сделал рабочую частоту полумоста равной 30кГц. Потому как чем меньше частота, тем меньше энергопотребление. Для того, чтобы на выходе напряжение было побольше, я заставляю строчник работать в резонансе. Резонанс подбирается конденсатором С9. Его, кстати, лучше поставить на напряжение не меньше 620В. Подбирать резонанс можно и частотой (вместо резистора R3 поставить подстроечник, к примеру), но при изменении рабочей частоты меняется потребление и схема может начать работать нестабильно.

 

Механика тоже довольно проста. В качестве корпуса я использовал редуктор от вентиляции. Такие можно найти практически в любом строительном магазине. Все узлы держатся на трении. Для того, чтобы фанерка не вставлялась дальше, чем нужно, я приклеил деревянные брусочки-ограничители. Провод питания посадил на скобы и облил термоклеем, чтобы и не думал вырываться.

А вот с колбой пришлось немного помудрить. Во-первых, колбе обязательно нужна металлическая поверхность снизу, иначе “молнии” начинают бить исключительно вниз. Металлическая поверхность приобретает тот-же заряд, что и молнии и отталкивает их. Естественно, эта поверхность должна быть соединена с высоковольтный проводом.

Для удержания колбы, я вырезал деревянный кружек, который очень плотно входит в корпус, и не требует дополнительной фиксации. В разобранном виде колба получилась вот такой:

После сборки дрожащими руками всовываем вилку в розетку, ииии…. Видем красивый плазменный шарик!

 

 

 

На последок, поделюсь печатной платой. Плата отзеркалена.

 

Видео

По просьбе рута, выкладываю видео работы плазмошара.

Самодельные плазменные шары | Катушки Тесла и все-все-все

Последние эксперименты и разработки привели к созданию настоящих, повторяющих по форме классические, плазменных шаров. Подробнее читать здесь.

Всем хорошо знакомы «плазменные шары», они же «палантиры». Представляют они собой, по сути, колбу с откачанным воздухом, и подведённым к центральному электроду высокочастотным напряжением в несколько киловольт. Кроме того, в сведущем народе широко известен рецепт «плазменного шарика из лампочки». В обычных лампах накаливания — сильно разреженный воздух, иногда с добавками аргона, и они светятся похожим на заводские плазменные шары образом, будучи подключены к горячему выходу источника высокого напряжения высокой частоты. Собственно, это чуть ли не самый простой из эффектных фокусов с высокими напряжениями: собираем/выковыриваем любой ВВ ВЧ источник, тыкаем его горячий конец в цоколь лампочки и наслаждаемся фиолетовыми сполохами. Но лампочки бывают разные. Мне посчастливилось добыть круглую прожекторную лампу на киловатт, а также на 500 ватт. Вот они светятся почти что как настоящие плазменные шары, ибо колба под 15 сантиметров диаметром. Впрочем, и обычные маленькие лампочки тоже весьма красивы в этом отношении.

Но что мешает попробовать сделать нечто подобное самому, так сказать, из подручных материалов? Всех дел — найти подходящую прозрачную ёмкость и откачать оттуда воздух.

Плазмабанка

"Пробка"

Проблема здесь одна: трудно запаять стекло так, чтобы оно не треснуло при остывании. Решить её так и не получилось, а потому пришлось прибегнуть к компромиссному решению. Банка не запаивается наглухо, а закрывается обычным сантехническим краном. Они держат вакуум не идеально, но вполне неплохо для наших задач. Делаем из подручных средств электрод, закупориваем банку посаженным на термоклей (неплохой герметик) стальным кругляком, в который врезан кран и впаян электродик. Откачиваем воздух компрессором (у меня — от холодильника, но лучше найти от кондиционера или нормальный китайский вакуумный насос), подключаем высокое напряжение…

И у нас есть собственный, самолично сделанный плазменный шар. А, точнее, плазменная банка. То же самое можно повторить с бутылкой, химической колбой и любым другим подходящим предметом, который не треснет от разницы давлений. Я пытался приспособить советский сферический аквариум, но тот оказался кривым и дал трещину, увы.

А вот как выглядит такая банка в работе, при питании от лампового строчника.

И другая, калибром поменьше, по тому же принципу сделанная.

И колба Бунзена.

Посмотреть ещё фотографии >>

И немного видео.

Недавно мне достался компрессорный насос от кондиционера. Будучи соединён последовательно на откачку с насосом от холодильника, он может дать намного лучшее разрежение, чем возможно получить с одним только холодильниковым компрессором. Более низкое давление позволяет получать очень интересные разряды в откачанных емкостях большого объёма, и, в особенности, получать страты (искажения формы тлеющего разряда, напоминающие продольные волны, имеющие акустическую природу и до сих пор нормально не разобранные учёными в плане природы их возникновения) в трубке с параллельными электродами, а также получать разряды в парах металлов и иных веществ.

Из подопытных ингредиентов мне удалось найти: воздух (вполне самоочевидно), спирт, медь, алюминий, натрий и ксенон (внезапно, один хороший товарищ подогнал баллончик с ним). Были ещё варианты попробовать азот, пропан, кислород, но пропан — органика и даст то же, что и спирт, азот похож на воздух, а кислород опасаюсь совмещать с маслом компрессора 😀

В качестве рабочей ёмкости использовались мои любимые плазмабанки, ноу-хау которых освоено уже вполне. Источник разряда — ЛКТ на ГК-71. Варьируемые переменные — частота интерруптера, скважность интерруптера, степень откачки содержимого банки, собственно содержимое банки.

Просто воздух. Откачка максимальная — разряд тлеет по объёму банки, не образуя явных плазменных каналов.

Воздух и натрий. При большом заполнении крупинки хлорида натрия прогреваются и разряд становится намного более жёлтым.

Пары спирта. Толстые жгуты с жёлтым свечением внизу — большое заполнение, тонкие жгуты — малое, столб разряда с кучей тонких ответвлений — сильная откачка.

Пары меди. Изначально предполагалась борная кислота (и жёлто-зелёный цвет бора), но медная проволока прогрелась и начала испаряться куда раньше. Необычайно красивое изумрудное свечение. Откачка сильная, заполнение у интерраптера большое.

no images were found

Ксенон с небольшими примесями воздуха (учитывая условия работы, избавиться от них трудновато). Чем больше плазменных жгутов — тем выше давление.

no images were found

Ксенон с полупрогретым алюминие и следует прогретый алюминий (голубого оттенка яркий жгут).

Как только невыносимая жара на улице сделает возможной продолжение жизнедеятельности, сделаю аналогичных снимков с большой цилиндрической вакуумной камерой.

Метки отсутствуют.

Плазменная лампа — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2016; проверки требуют 49 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2016; проверки требуют 49 правок. Шаровидная плазменная лампа Плазменные лампы различной формы и цвета свечения

Пла́зменная ла́мпа — декоративный прибор, состоящий обычно из стеклянной сферы с установленным внутри электродом. На электрод подаётся переменное высокое напряжение с частотой около 30 кГц. Внутри сферы находится разреженный газ (для уменьшения напряжения пробоя). В качестве наполнения могут выбираться разные смеси газов для придания «молниям» определённого цвета. Теоретически, срок службы у плазменных ламп может быть весьма продолжительным, поскольку это маломощное осветительное устройство, не содержащее нитей накаливания и не нагревающееся в процессе своей работы. Типичная потребляемая мощность 5—10 Вт.

Плазменная лампа — изобретение Николы Теслы (1894 год).

Касание плазменной лампы рукой

При обращении нужно соблюдать меры предосторожности: если на плазменную лампу положить металлический предмет, вроде монеты, можно получить слабый удар током, при условии, что человек заземлён.

Значительное переменное электрическое напряжение может индуцироваться лампой в проводниках даже сквозь непроводящую сферу. Прикосновение одновременно к лампе и к заземленному предмету, например, к батарее отопления приводит к удару электрическим током.

Аналогично, надо стараться не помещать электронные приборы рядом с плазменной лампой. Это может привести не только к нагреванию стеклянной поверхности, но и к существенному воздействию переменного тока на сам электронный прибор.

Электромагнитное излучение, создаваемое плазменной лампой, может наводить помехи в работе таких приборов, как цифровые аудиопроигрыватели и подобные устройства. Если к работающей плазменной лампе на расстоянии 5—20 см держа в руке поднести неоновую, люминесцентную (в том числе и неисправную, но не разбитую) или любую другую газоразрядную лампу, то она загорится.

Плазменный шар в действии

В патенте U.S. Patent 0 514 170 («Электрический источник света», 6 февраля 1894) Никола Тесла описал конструкцию плазменной лампы. Тесла описал лампу, состоящую из стеклянной колбы с единственным электродом внутри. На электрод подавался ток высокого напряжения от катушки Тесла, в результате чего на конце электрода появлялось свечение, известное как коронный разряд. Тесла назвал своё изобретение «Одноконтактная лампа», а позже «Газоразрядная трубка».

Современный вид светильника плазменный шар получил благодаря изобретателю и ученому Джеймсу Фалку[en]. Он конструировал необычные светильники и продавал их коллекционерам и научным музеям в 1970-х годах.

Технология создания газовых смесей, используемая при изготовлении современных плазменных шаров, была недоступна во времена Николы Теслы. В современных светильниках используется смесь инертных газов, таких как ксенон, криптон, неон. Благодаря этому разряды в современных плазма-шарах имеют различные оттенки.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *