ЛАБОРАТОРНЫЙ БП С ЗАЩИТОЙ ИЗ ОБЫЧНОГО КОМПЬЮТЕРНОГО
Здравствуйте, сейчас я расскажу о переделке ATX блока питания модели codegen 300w 200xa в лабораторный блок питания с регулировкой напряжения от 0 до 24 Вольт, и ограничением тока от 0,1 А до 5 Ампер. Выложу схему, которая у меня получилась, может кто чего улучшит или добавит. Выглядит сама коробка вот так, хотя наклейка, может быть синей или другого цвета.
Причем платы моделей 200xa и 300x почти одинаковы. Под самой платой есть надпись CG-13C, может быть CG-13A. Возможно, есть другие модели похожие на эту, но с другими надписями.
Выпаивание ненужных деталей
Изначально схема выглядела вот так:
Нужно убрать всё лишнее, провода atx разъёма, отпаять и смотать ненужные обмотки на групповом дросселе стабилизации. Под дросселем на плате, где написано +12 вольт ту обмотку и оставляем, остальные сматываем. Отпаять косу от платы (основного силового трансформатора), не в коем случае не откусывайте её. Снять радиатор вместе с диодами Шоттки, а после того как уберём все лишнее, будет выглядеть вот так:
Конечная схема после переделки, будет выглядеть вот так:
В общем выпаиваем все провода, детали.
Делаем шунт
Делаем шунт, с которого будем снимать напряжение. Смысл шунта в том, что падение напряжения на нём, говорит ШИМ-у о том, как нагружен по току — выход БП. Например сопротивление шунта у нас получилось 0,05 (Ом), если измерить напряжение на шунте в момент прохождения 10 А то напряжение на нём будет:
U=I*R = 10*0,05 = 0,5 (Вольт)
Про манганиновый шунт писать не буду, поскольку его не покупал и у меня его нет, использовал две дорожки на самой плате, замыкаем дорожки на плате как на фото, для получения шунта. Понятное дело, что лучше использовать манганиновый, но и так работает более чем нормально.
Ставим дроссель L2 (если есть) после шунта
Вообще их рассчитывать надо, но если что — на форуме где-то проскакивала программа по расчету дросселей.
Подаём общий минус на ШИМ
Можно не подавать, если он уже звонится на 7 ноге ШИМ. Просто на некоторых платах на 7 выводе не было общего минуса после выпайки деталей (почему — не знаю, мог ошибаться, что не было:)
Припаиваем к 16 выводу ШИМ провод
Припаиваем к 16 выводу ШИМ — провод, и данный провод подаём на 1 и 5 ножку LM358
Между 1 ножкой ШИМ и выходом плюс, припаиваем резистор
Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.
Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.
На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.
Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.
Устанавливаем на выход БП конденсаторы и нагрузочный резистор
Нагрузочный резистор можно поставить от 470 до 600 Ом 2 Ватта. Конденсаторы по 500 мкф на напряжение 35 вольт. Конденсаторов с требуемым напряжением у меня не было, поставил по 2 последовательно по 16 вольт 1000 мкф. Припаиваем конденсаторы между 15-3 и 2-3 ногами ШИМ.
Припаиваем диодную сборку
Ставим диодную сборку ту, что и стояла 16С20C или 12C20C, данная диодная сборка рассчитана на 16 ампер (12 ампер соответственно), и 200 вольт обратного пикового напряжения. Диодная сборка 20C40 нам не подойдет — не думайте её ставить — она сгорит (проверено 🙂 ).
Если у вас есть какие либо другие диодные сборки смотрите чтоб обратное пиковое напряжение было минимум 100 В ну и на ток, какой по больше. Обычные диоды не подойдут — они сгорят, это ультро-быстрые диоды, как раз для импульсного блока питания.
Ставим перемычку для питания ШИМ
Поскольку мы убрали кусок схемы который отвечал за подачу питания на ШИМ PSON, нам надо запитать ШИМ от дежурного блока питания 18 В. Собственно, устанавливаем перемычку вместо транзистора Q6.
Припаиваем выход блока питания +
Затем разрезаем общий минус который идёт на корпус. Делаем так, чтоб общий минус не касался корпуса, иначе закоротив плюс, с корпусом БП, всё сгорит.
Припаиваем провода, общий минус и +5 Вольт, выход дежурки БП
Данное напряжение будем использовать для питания вольт-амперметра.
Припаиваем провода, общий минус и +18 вольт к вентилятору
Данный провод через резистор 58 Ом будем использовать для питания вентилятора. Причём вентилятор нужно развернуть так, чтоб он дул на радиатор.
Припаиваем провод от косы трансформатора на общий минус
Припаиваем 2 провода от шунта для ОУ LM358
Припаиваем провода, а также резисторы к ним. Данные провода пойдут на ОУ LM357 через резисторы 47 Ом.
Припаиваем провод к 4 ножке ШИМ
При положительном +5 Вольт напряжении на данном входе ШИМ, идёт ограничение предела регулирования на выходах С1 и С2, в данном случае с увеличением на входе DT идёт увеличение коэффициента заполнения на С1 и С2 (нужно смотреть как транзисторы на выходе подключены). Одним словом — останов выхода БП. Данный 4-й вход ШИМ (подадим туда +5 В) будем использовать для остановки выхода БП в случае КЗ (выше 4,5 А) на выходе.
Собираем схему усиления тока и защиты от КЗ
Внимание: это не полная версия — подробности, в том числе фотографии процесса переделки, смотрите на форуме.
Автор материала: xz
Форум по ATX
Обсудить статью ЛАБОРАТОРНЫЙ БП С ЗАЩИТОЙ ИЗ ОБЫЧНОГО КОМПЬЮТЕРНОГО
Переделка компьютерного блока питания — Блоки питания — Источники питания
Подробное описание.
Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.
Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.
Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.
Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.
Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.
Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).
Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.
Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.
Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.
После всех выполненных операций у нас должно получиться следующее.
Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.
Вид платы со стороны деталей.
Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;
В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:
«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.
Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»
Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.
Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.
Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.
Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.
Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.
Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.
Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.
Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.
Схема вновь установленных деталей.
Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.
Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.
Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!
Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.
Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.
Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.
Схема выпрямителя с диодным мостом.
С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;
Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.
Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.
Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.
В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.
Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.
Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.
Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.
Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.
Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.
В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).
Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.
Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.
Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.
Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;
Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.
Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.
Удачи Вам в конструировании!
Лабораторный источник питания из блока ATX компьютера
Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.
Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.
Распиновка выходов блока питания компьютера
Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.
Переделка началась
Что нам понадобиться?
- — Клеммы винтовые.
- — Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
- — Трубка термоусадочная.
- — Пара светодиодов с гасящими резисторами на 330 Ом.
- — Переключатели. Один для сети, второй для управления
Схема доработки блока питания компьютера
Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.
Начнем
Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.
Вставляем клеммы и затягиваем.
Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.
Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.
Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.
Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.
Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.
Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.
Смотрите видео изготовления лабораторного блока своими руками
Лабораторный блок питания из компьютерного
Нам понадобятся:
1. Блок питания от старого Пк (любой ATX)
2. Модуль ЖК вольтметра
3. Радиатор для микросхемы(любой, подходящий по размеру)
4. Микросхема LM317 (регулятор напряжения)
5. электролитический конденсатор 1мкФ
6. Конденсатор 0.1 мкФ
7. Светодиоды 5мм — 2шт.
8. Вентилятор
9. Выключатель
10. Клеммы — 4шт.
11. Резисторы 220 Ом 0.5Вт — 2шт.
12. Паяльные принадлежности, 4 винта M3, шайбы, 2 самореза и 4 стойки из латуни длиной 30мм.
Я хочу уточнить, что список примерный, каждый может использовать то, что есть под рукой.
Общие характеристики блока питания ATX:
Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера. Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги:а) Входное высокое напряжение сначала выпрямляется и фильтруется.
б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.
в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между
высоковольтной и низковольтными частями схемы.
г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.
Основными достоинствами таких источников являются:
— Высокая мощность при небольших размерах
— Высокий КПД
Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В.
К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора.
Мощность блока питания
Электрические характеристики блока питания напечатаны на наклейке (см. рисунок) которая, обычно, находится на боковой стороне корпуса. Из нее можно получить следующую информацию:Напряжение — Ток
3.3В — 15A
5В — 26A
12В — 9А
-5 В — 0,5 А
5 Vsb — 1 A
Для данного проекта нам подходят напряжения 5В и 12В. Максимальный ток, соответственно будет 26А и 9А, что очень неплохо.
Питающие напряжения
Выход блока питания ПК состоит из жгута проводов различных цветов. Цвет провода соответствует напряжению:Нетрудно заметить, что кроме разъемов с питающими напряжениями +3.3В, +5В, -5В, +12В, -12В и земли, есть еще три дополнительных разъема: 5VSB, PS_ON и PWR_OK.
Разъем 5VSB используется для питания материнской платы, когда блок питания находится в дежурном режиме.
Разъем PS_ON (включение питание) используется для включения блока питания из дежурного режима. При подаче на этот разъем напряжения 0В блок питания включается, т.е. чтобы запустить блок питания без материнской платы его нужно соединить с общим проводом (землей).
Разъем POWER_OK в дежурном режиме имеет состояние близкое к нулю. После включения блока питания и формировании на всех выходах напряжений нужного уровня на разъеме POWER_OK появляется напряжение около 5В.
ВАЖНО: Чтобы блок питания работал без подключения к компьютеру необходимо соединить зеленый провод с общим проводом. Лучше всего это сделать через переключатель.
Модернизация блока питания
1. Разборка и чистка
Нужно разобрать и хорошо очистить блок питания. Лучше всего для этого подойдет пылесос включенный на выдув или компрессор. Нужно проявлять повышенную осторожность, т.к. даже после отключения блока питания от сети на плате остаются напряжения, опасные для жизни.
2. Подготавливаем провода
Отпаиваем или откусываем все провода, которые не будут использованы. В нашем случае, мы оставим два красных, два черных, два желтых, сиреневый и зеленый.
Если есть достаточно мощный паяльник — лишние провода отпаиваем, если нет — откусываем кусачками и изолируем термоусадкой.
3. Изготовление передней панели.
Сначала нужно выбрать место для размещения передней панели. Идеальным вариантом та будет сторона блока питания, с которой выходят провода. Затем делаем чертеж передней панели в Autocad или другой аналогичной программе. При помощи ножовки, дрели и резака из куска оргстекла изготавливаем переднюю панель.
4. Размещение стоек
Согласно отверстий для крепления в чертеже передней панели просверливаем аналогичные отверстия в корпусе блока питания и прикручиваем стойки, которые будут держать переднюю панель.
5. Регулировка и стабилизация напряжения
Для возможности регулировки выходного напряжения нужно добавить схему регулятора. Была выбрана знаменитая микросхема LM317 из-за ее простоты включения и невысокой стоимости.LM317 представляет собой трехвыводный регулируемый стабилизатор напряжения, способный обеспечить регулировку напряжения в диапазоне от 1.2В до 37В при токе до 1.5А. Обвязка микросхемы очень простая и состоит из двух резисторов, которые необходимы для задания выходного напряжения. Дополнельно данная микросхема имеет защиту перегрева и перегрузки по току.
Схема включения и распиновка микросхемы приведены ниже:
Резисторами R1 и R2 можно регулировать выходное напряжение от 1.25В до 37В. Т.е в нашем случае, как только напряжение достигнет 12В, то дальнейшее вращение резистора R2 напряжение регулировать не будет. Чтобы регулировка происходила на всему диапазону вращения регулятора необходимо рассчитать новое значение резистора R2. Для расчета можно использовать формулу, рекомендуемую производителем микросхемы:
Либо упрощенная форма этого выражения:
Vout = 1.25(1+R2/R1)
Погрешность при этом получается очень низкой, так что вторую формулу вполне можно использовать.
Принимая во внимание полученную формулу можно сделать следующие выводы: когда переменный резистор установлен на минимальное значение (R2 = 0) выходное напряжение составляет 1.25В. При вращении ручки резистора выходное напряжение будет возрастать, пока не достигнет масимального напряжения, что в нашем случае составляет чуть меньше 12В. Другими словами максимум у нас не должен превышать 12В.
Приступим к расчету новых значений резисторов. Сопротивление резистора R1 возьмем равным 240 Ом, а сопротивление резистора R2 рассчитаем:
R2=(Vout-1,25)(R1/1.25)
R2=(12-1.25)(240/1.25)
R2=2064 Ома
Ближайшее к 2064 Ом стандарное значение сопротивления резистора равно 2 кОм. Значения резисторов будут следующие:
R1=240 Ом, R2=2 кОм
На этом расчет регулятора закончен.
6. Сборка регулятора
Сборку регулятора выполним по следующей схеме:Ниже приведу принципиальную схему:
Сборку регулятора можно выполнить навесным монтажем, припаивая детали напрямую к выводам микросхемы и соединяя остальные детали при помощи проводов. Также можно специально для этого вытравить печатную плату или собрать схему на монтажной. В данном проекте схема была собрана на монтажной плате.
Еще обязательно нужно прикрепить микросхему стабилизатора к хорошему радиатору. Если радиатор не имеет отверстия для винта, тогда оно делается сверлом 2.9мм, а резьба нарезается тем же винтом М3, которым будет прикручена микросхема.
Если радиатор будет прикручен напрямую к корпусу блока питания, тогда необходимо изолировать заднюю часть микросхемы от радиатора кусочком слюды или силикона. В этом случае винт, которым прикручена LM317 должен быть изолирован с помощью пластиковой или гетинаксовой шайбы. Если же радиатор не будет контактировать с металлическим корпусом блока питания, микросхему стабилизатора обязательно нужно посадить на термопасту. На рисунке можно увидеть, как радиатор крепится эпоксидной смолой через пластину оргстекла:
7. Подключение
Перед пайкой необходимо установить светодиоды, выключатель, вольтметр, переменный резистор и разъемы на переднюю панель. Светодиоды отлично вставляются в отверстия, просверленные 5мм сверлом, хотя дополнительно их можно закрепить суперклеем. Переключатель и вольтметр держатся крепко на собственных защелках в точно выпиленных отверстиях Разъемы крепятся гайками. Закрепив все детали, можно приступать к пайке проводов в соответствии со следующей схемой:
Для ограничения тока последовательно с каждым светодиодом припаивается резистор сопротивлением 220 Ом. Места соединений изолируются при помощи термоусадки. Коннекторы припаиваются к кабелю напрямую или через переходные разъемы Провода должны быть достаточно длинными, чтобы можно было без проблем снять переднюю панель.
Перед подключением вольтметра, нужно внимательно разобраться со схемой подключения, рекомендованной производителем.
Встречаются модели с внешним питанием и питанием от измеряемого напряжения.
В нашем случае для питания индикатора необходимо было постоянное напряжение 9-12В. Для этих целей подойдет плата от любого блока питания, способная выдавать требуемое напряжение или зарядное устройство от старого телефона. Также возможно использовать одно из фиксированных напряжений блока питания ATX.
8. Последние штрихи
Первое, что мы можем сделать, так это приклеить четыре силиконовый ножки-подставки, чтобы не царапать стол, понизить уровень шума и способствовать лучшему охлаждению БП.
Далее, необходимо закрыть боковые грани между блоком питания и передней панелью полосками оргстекла. Ширина полосок должна быть такой же, как и высота стоек, которые мы использовали. Боковые панели соединяем с передней панелью при помощи дихлорэтана или клея. Для улучшения охлаждения сверлим отверстия напротив радиатора охлаждения. Так же, чтобы улучшить охлаждение нижнюю полоску можно не ставить.
Наш лабораторный блок питания почти готов, но для начала проведем с ним некоторые тесты.
9. Испытания
Измерения:
При помощи мультиметра нужно измерить напряжение между общим разъемом и разъемами с напряжением. При измерении регулируемого выхода измерения проводятся минимального и максимального напряжения. Результаты следующие:
Защита:
Поскольку блок питания компьютера имеет защиту от перегрузки и короткого замыкания, мы можем это проверить. Для этого закорачиваем проводом общий разъем и разъем 5В или 12В. Блок питания должен отключиться. Для повторного его включения необходимо выключить и снова включить выключатель подачи 220В. Регулируемый выход защищен микросхемой LM317. Защита в зависимости от температуры микросхемы срабатывает при превышении тока нагрузки 2-3А.
10. Улучшение
В процессе эксплуатации было замечено, что на микросхеме LM317 рассеивается очень большое количество тепла и радиатор достаточно горячий. Поэтому дополнительно, при помощи двух шурупов, был установлен 12-ти вольтовый вентилятор от видеокарты.
Питание вентилятора берется с выхода 12В, и желательно запитать его через дополнительный выключатель, чтобы вставить его только тогда, когда это необходимо.
Результат
В основу написания легла статья с испанского сайта http://www.taringa.net
Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку. Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование. Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В. Часть 1. Так себе. Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения. +12 В — желтый +5 В — красный +3,3 В — оранжевый -5 В — белый -12 В — синий 0 — черный По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D. Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится. Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания. Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт. Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения. Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В. Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра. Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В. Замеряем все напряжения по шинам +12 В: +2,5 … +13,5 +5 В: +1,1 … +5,7 +3,3 В: +0,8 … 3,5 -12 В: -2,1 … -13 -5 В: -0,3 … -5,7 Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне. Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток. Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0. Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель. Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ. Часть 2. Более-менее. Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются. Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор. Измерение параметров дало следующие результаты:
Перепайку я начал с выпрямительных диодов. Диодов два и они достаточно слабые. Диоды я взял от старого блока. Диодные сборки S20C40C — Шоттки, рассчитанные на ток 20 А и напряжение 40 В, но ничего путного не получилось. Либо сборки такие были, но один сгорел и я просто впаял два более сильных диодов. Влепил разрезанные радиаторы и на них диоды. Диоды стали сильно греться и накрылись 🙂 , но даже с более сильными диодами напряжение на шине -12 В так и не пожелало опуститься до -15 В. После перепайки двух резисторов и двух диодов можно было скрутить блок питания и включить нагрузку. Вначале использовал нагрузку в виде лампочки, а измерял напряжение и ток по отдельности. Затем перестал париться, нашел переменный резистор из нихрома, мультиметр Ц4353 — измерял напряжение, а цифровым — ток. Получился неплохой тандем. По мере увеличения нагрузки напряжение незначительно падало, ток рос, но грузил я только до 6 А, а лампа по входу светилась в четверть накала. При достижении максимального напряжения лампа по входу засветилась на половинную мощность, а напряжение на нагрузке несколько просело. По большому счету переделка удалась. Правда, если включаться между шинами +12 В и -12 В, то защита не работает, но в остальном все четко. Всем удачных переделок. Однако и такая переделка долго не прожила. Часть 3. Удачная. Еще одной переделкой стал блок питания с микрухой 339. Я не приверженец выпаивать все, а затем стараться запустить блок, поэтому по шагам поступил так: -проверил блок на включение и срабатывание защиты от кз на шине +12 В; -вынул предохранитель по входу и заменил на патрон с лампой накаливания — так безопасно включать чтобы не сжечь ключи. Проверил блок на включение и кз; -удалил резистор на 39к между 1 ногой 494 и шиной +12 В, заменил на переменный резистор 45к. Включил блок — напряжение по шине +12 В регулируется в пределе +2,7…+12,4 В, проверил на кз; -удалил диод с шины -12 В, находится за резистором, если идти от провода. По шине -5 В слежения не было. Иногда стоит стабилитрон, суть его одна — ограничение выходного напряжения. Выпаивание микруху 7905 уводит блок в защиту. Проверил блок на включение и кз; -резистор 2,7к от 1 ножки 494 на массу заменил на 2к, там их несколько, но именно изменение 2,7к дает возможность изменить предел выходное напряжения. Например, при помощи резистора на 2к на шине +12 В стало возможным регулировать напряжение до 20 В, соответственно увеличив 2,7к до 4к максимальное напряжение стало +8 В. Проверил блок на включение и кз; -заменил выходные конденсаторы на шинах 12 В на максимальное 35 В, шинах 5 В на 16 В; -заменил спаренный диод шины +12 В, был tdl020-05f c напряжение до 20 В но током 5 А, поставил sbl3040pt на 40 А, выпаивать из шины +5 В не надо — нарушится обратная связь на 494. Проверил блок; -измерил ток через лампу накаливания по входу — при достижении потребления тока в нагрузке 3 А лампа по входу светилась ярко, но ток на нагрузке больше не рос, просаживало напряжение, ток через лампу был 0,5 А, что укладывалось в ток родного предохранителя. Убрал лампу и поставил обратно родной предохранитель на 2 А; -перевернул вентилятор обдува чтобы воздух вдувало внутрь блока и охлаждение радиатора было эффективнее. В результате замены двух резисторов, трех конденсаторов и диода получилось переделать компьютерный блок питания в регулируемый лабораторный с выходном током больше 10 А и напряжением 20 В. Минус в отсутствии регулирования тока, но зато осталась защита от кз. Лично мне регулировать так не надо — блок итак выдает больше 10 А. Переходим к практической реализации. Есть блок, правда TX. Но у него есть кнопка включения, тоже удобно для лабораторного. Блок способен выдать 200 Вт с заявленным током по 12 В — 8А и 5 В — 20 А. На блоке написано, что вскрывать нельзя и внутри нет ничего такого для любителей. Так что мы вроде как профессионалы. На блоке есть переключатель на 110/220 В. Переключатель конечно удалим за ненадобностью, а вот кнопку оставим — пусть работает. Внутренности более чем скромные — нет входного дроселя и заряд входных кондеров идет через резистор, а не через термистор, в результате идет потеря энергия, которая нагревает резистор. Выбрасываем провода на переключатель 110 В и все что мешает отделить плату от корпуса. Заменяем резистор на термистор и впаиваем дроссель. Убираем входной предохранитель и впаиваем вместо него лампочку накаливания. Проверяем работу схему — входная лампа светится на токе примерно 0,2 А. Нагрузкой является лампа 24 В 60 Вт. Светится лампа на 12 В. Все хорошо и проверка на короткое замыкание работает. Находим резистор от 1 ноги 494 к +12 В и поднимаем ногу. Подпаиваем переменный резистор вместо него. Теперь будет регулирование напряжения на нагрузке. Ищем резисторы от 1 ноги 494 к общему минусу. Здесь их три. Все достаточно высокоомные, я выпаял самый низкоомный резистор на 10к и запаял вместо него на 2к. Это увеличило предел регулирования до 20 В. Правда при тесте этого еще не видно, срабатывает защита от перенапряжения. Находим диод на шине -12 В, стоит после резистора и поднимаем его ногу. Это отключит защиту от перенапряжений. Теперь все должно быть. Теперь меняем выходной конденсатор на шине +12 В на предел 25 В. И плюс 8 А это с натяжкой для маленького выпрямительного диода, так что и этот элемент меняем на что-то более силовое. И конечно включаем и проверяем. Ток и напряжение при наличии лампы по входу может сильно не расти если нагрузка подключена. Вот если нагрузку отключить, то напряжение регулируется до +20 В. Если все устраивает — меняем лампу на предохранитель. И даем блоку нагрузку. Для визуальной оценки напряжения и тока я использовал цифровой индикатор с алиэкспрес. Тут еще был такой момент — напряжение на шине +12В начинало с 2,5В и это было не очень приятно. А вот на шине +5В от 0,4В. Поэтому я объединил шины при помощи переключателя. Сам индикатор имеет 5 провод на подключение: 3 на измерение напряжения и 2 на ток. Индикатор питается напряжением от 4,5В. Дежурное питание как раз составляет 5В и им питается микруха tl494. Очень рад что удалось переделать компьютерный блок питания. Всем удачной переделки. |
Простой лабораторный блок питания из старого компьютерного блока питания.
Эту поделку можно сделать не только для применения лабораторного блока питания, а также она ещё подойдёт, как зарядное устройство для аккумулятора автомобиля.
Поделка простая и много слов говорить не буду, итак берём старый блок питания, вскрываем его и откусываем все ненужные провода, оставляем только 12 и 5 вольт.
Возможно кто то не знает, для того чтобы блок питания запускался нужно замкнуть на плате черный и зеленый провод.
Далее я взял 2 разъема от колонок, они удобны тем, что можно быстро подключать и отключать провода. Вы можете использовать любые разъемы на ваше усмотрение.
Один такой разъем я подключил напрямую на 5 вольт, а вот 12 вольт я подключил к модулю повышения напряжения, который я заказывал на всем известном алиэкспрессе, может кому пригодится то вот ссылка на него.
Этот модуль имеет мощность 150 ватт и может поднимать напряжение до 32 вольт.
А вот к выходу этого модуля уже подключаем выходной разъём,
который впоследствии будем крепить на лицевой стороне нашего блока питания и снимать с него напряжение от 12 до 32 вольт.
А чтобы плавно регулировать напряжение, нужно закрепить переменный резистор на 10 килоом, тоже на лицевой панели нашего блока питания. А для этого нужно сначала выпаять на плате маленький, переменный резистор и вместо него впаять свой.
Ничего тут сложного нет, я надеюсь, что каждый разберётся.
Ну и конечно же для удобства я ещё подключил вольт-амперметр, подключить можно по предоставленной схеме.
Вот и всё, у нас получился простой и довольно таки мощный лабораторный блок питания и совмещенное зарядное устройство для заряда аккумуляторных батарей.
И снова о переделке БП формата АТХ
РадиоКот >Схемы >Питание >Зарядные устройства >И снова о переделке БП формата АТХ
Часть 1-я.
Отмена анонимности в конкурсе неожиданно предоставила возможность поделиться продолжением моих опытов по переделке БП АТХ в зарядные устройства не ожидая окончания конкурса. Чем и решил воспользоваться, чтобы поздравить кота с днюхой.
Ранее, мной были опробованы и описаны, различные способы переделки БП АТХ в зарядное устройство для 12В аккумуляторов. Естественно, после полевых испытаний, возникли определённые пожелания. Как выяснилось, электронный предохранитель на полевом транзисторе по схеме Simurg, частенько позволял себе ложные срабатывания. У меня так получилось, может просто неудачно? В частности, срабатывал при подключении сильно разряженного аккумулятора. Приходилось по несколько раз подключать, пока не получится. Можно было, конечно, поиграть с его чувствительностью, задержкой срабатывания и добиться нужного результата, но из-за разброса параметров полупроводников, пришлось бы это делать для каждого устройства индивидуально, а при экспериментах с коротким замыканием во время настройки можно и спалить само зарядное.
Проблема, естественно, скрывается в первоначальном броске тока, ведь у автомобильного аккумулятора, помимо всего прочего, есть ещё и приличная ёмкость. Её зарядка и создаёт бросок тока. Значит, если бросков тока избежать затруднительно – нужно их игнорировать. Также было трудно зажечь галогенные лампы на 70Вт сразу, из-за броска тока через холодные спирали.
Решил, что мой предохранитель, будет ориентироваться на напряжение на выходе зарядного, а не на ток. Потому как, при коротком замыкании оно близко к нулю, а при переполюсовке, и вовсе — обратной полярности.
При переделках БП на TL494 (KA7500) я использовал второй компаратор (ноги 15 и 16), для введения ограничения максимального тока. Раньше, я отключал обе ноги от своих изначальных мест и подключал согласно схеме переделки. Теперь, по новой схеме, необходимо отключать только одну: 15-ю, а 16-я так и остаётся на земле (разумеется, это относится только к тем БП, в которых, этот компаратор не используется с другой целью, в них 16-я нога не сидит на земле). В качестве шунта используются дорожки платы. Полевой транзистор канала 3,3В остаётся на своём законном месте, без выпаивания и даже резать дорожки не понадобится (опять же есть БП в которых для стабилизации 3,3В используется магнитный усилитель, там вы полевого транзистора не найдёте). Из всех процедур настройки, нужно будет, только подобрать резисторы делителя на 1-й ноге до установки нужного напряжения холостого хода на выходе, и найти место на дорожках, дающее нужное падение напряжения при необходимом максимальном токе, либо подобрать R7, кому что больше нравится.
Что и как нужно удалять из БП, уже было описано мной довольно подробно в предыдущей статье. К тому же блоки немного разные и пошаговую инструкцию с позициями элементов создать невозможно.
Вот схема фрагмента который нужно смонтировать:
Рис 1.
К ножкам 1, 15 и 16 TL494 не должно быть подключено ничего, кроме тех деталей, что есть на схеме. Остальные трогать не надо.
Опытные коты могут пропустить этот абзац, он для котят. Резисторы R1, R2 и R3 необязательно должны быть именно таких номиналов. Тут главное, соблюсти пропорцию. Изначально они на плате уже есть. R2 и R3 я не трогаю, а R1 ставлю какой нужно для 14,5В на выходе. Рассчитать его очень просто. На 1-й ноге должно получиться при 14,5В (или сколько вам там нужно) на выходе такое же напряжение как и на второй. В подавляющем большинстве блоков, из встретившихся мне, это было 2,5В. Отсюда следует вывод, что R1 должен быть таким, чтобы при нужном нам выходном напряжении на делителе из R1, R2 и R3 получились эти самые 2,5В. Написал эту не представляющую секрета информацию потому, что часто видел в форумах вопрос: «А какой номинал нужно поставить?».
R4 – виртуальный, это как раз и есть, сопротивление дорожек на плате.
За счёт чего же достигается ограничение максимального тока в этой схеме? Всё очень просто. Резисторы R5 и R7 образуют обычный делитель напряжения. Хитрость в том, что этот делитель не делит, как обычно, напряжение между землей и источником. Он делит напряжение между плавающим относительно земли отрицательным напряжением и источником опорного напряжения TL494.
Рассмотрим, как это работает в конкретных цифрах:
- При отсутствии тока в нагрузке, падение напряжения на R4 равно нулю. Значит, на делителе будет 5V*R7/(R7+R5), т.е. около 50мВ, на 16-й ноге естественно 0В
- Что же будет при токе, ну допустим, 2А? На R4 возникнет падение напряжения в R4*2A=12mV. Это напряжение на вывод делителя из R5 и R7 приложится в отрицательной полярности, т.е на 15-й ножке ШИМ теперь будет уже не 50мВ, а 50-12=38мВ
- При дальнейшем росте тока нагрузки, будет расти и падение напряжения на R4, а следовательно, и на верхнем по схеме выводе делителя на R5 и R7 отрицательное напряжение будет увеличиваться. При определённом токе, оно достигнет -50мВ, и полностью скомпенсирует изначальные 50мВ холостого хода. Т.е. напряжение на 15-й ноге ШИМ станет равно 0В и сравняется с напряжением на 16-й ноге, которая «сидит» на земле. Компаратор начнёт работать и дальнейшего роста тока нагрузки не произойдёт.
Работа схемы отключения нагрузки довольно проста и понятна по схеме. При падении напряжения на выходных клеммах ниже определённого уровня (для номиналов как на схеме это около 5В), начинает закрываться транзистор VT1, что вызывает увеличение сопротивления открытого канала T1, что в свою очередь ещё больше уменьшает выходное напряжение и т.д. В результате, оба транзистора быстро закрываются, и остаются в этом состоянии пока КЗ или переполюсовка не будет устранена.
Методика переделки такова:
Сначала, как и раньше, выпаиваем всё лишнее (более подробно об этом было написано в предыдущей статье: https://www.radiokot.ru/circuit/power/charger/27/, поэтому повторяться не буду. Если кто забыл, то можно посмотреть там), затем, подбором делителя на 1-й ноге ШИМ, добиваемся нужного напряжения на выходе канала 12В. Далее, нужно разорвать соединение земли в области ШИМ с землей на выходе БП (косичка трансформатора). Это нужно делать не наобум, а очень внимательно. Земля ШИМ и обвязки вокруг неё должна оставаться общей. Вам нужно найти тот единственный проводник, который соединяет это всё с силовой землёй. Может мне просто везло, но я всегда находил эту перемычку. Нужно было её просто выпаять, дорожек я не перерезал ни разу.
Затем, нужно бросить перемычку от дорожки идущей от косички трансформатора на дорожку канала 3,3В, которая в свою очередь, идёт от ноги полевого транзистора так, чтобы из них получилась одна дорожка максимальной длины. Это и будет наш R4. Соответственно схемы переделки, подключаем вывод R7 рядом с косичкой трансформатора, а от ноги полевого транзистора, т.е. другого конца получившейся дорожки, она же наш R4, бросаем соединение на землю ШИМ. Резистор шунта R4 теперь у нас готов. Далее, выпаиваем 15-ю ногу ШИМ из платы, аккуратно приподнимаем над платой. Транзистор T1 у нас уже на месте, навесным монтажом устанавливаем R5 и R7. Остальная часть схемы собирается на отдельной платке и распаивается в нужные точки проводами. Выход для отрицательного провода берётся с площадок бывших 5В, именно туда подключен нужный вывод полевого транзистора, а плюса — с выхода 12В, соответственно.
Теперь надо запустить БП через амперметр и постепенно нагружать выход, например лампами от авто или мощными резисторами. С определенного момента при дальнейшем росте нагрузки, ток отдаваемый БП расти перестанет, а начнёт падать напряжение на выходе. Это и есть получившее значение ограничения тока. Если оно не совпадает с нужным вам, то его можно изменить подбором R7. Если нужно больше – R7 увеличиваем, если меньше – уменьшаем. Вот собственно и вся наладка.
Я уже сделал парочку по этому варианту, результатом доволен. Переделка и настройка достаточно проста, защита надёжна и не то чтобы не «капризна», а вообще не требует настройки. Канал -12В я оставлял, на нём получалось примерно -14В и я использовал его для питания вентилятора через резистор, R9 по схеме. Как я уже упоминал в начале, бывают БП с каналом 3,3В не на полевом транзисторе, тогда можно взять его где-либо и разместить на радиаторе соединив проводами с платой, а можно и не делать защиту такого типа, а применить другую. Например, на реле.
Бывает, что в режиме ограничения тока, появляется свист. По борьбе с ним в сети написано много, первоначально можно попробовать установить цепочку из резистора и конденсатора между 3-й и 15-й ногами TL494. Возможно, придётся повозиться с подбором номиналов этих деталей. Я остановился на 22кОм и 10нФ.
Если вдруг кто сам не догадался, то:
- HL1 светится когда «предохранитель» открыт и означает что-то вроде «К работе готов».
- HL2 светится если ШИМ работает и БП готов выдать напряжение на выход, и гаснет если сработала штатная защита от перегрузки и ШИМ был заглушен, либо ваше зарядное сгорело. Мне лично, такого добиться ни разу не удалось. Мой предохранитель вырубал раньше, чем БП успевал перегрузиться.
- HL3 загорается только если попутать клеммы аккумулятора, т.е. – «ошибка подключения (переполюсовка)».
Фото у меня всего два сохранилось, но на них можно найти и перемычку между землей и 3,3В, и резистор идущий от косички. К большому моему сожалению, не сохранились фото обратной стороны и готового устройства, но сейчас сфотографировать уже нечего. Зарядки нашли своих хозяев.
Вот всё, что осталось на память:
Фото 1 и 2.
Часть 2-я.
Теперь от простого перейдём к более сложному и более универсальному.
Следующая идея возникла как изготовление вещи для гаража (оказалось, что и для дома тоже), сочетающей в себе функции зарядного устройства и блока питания одновременно. Чтобы не напрягаться и не лепить ОУ для регулировки ограничения тока, возьмём изъезженный вдоль и поперёк очередной БП на TL494. Их всё ещё есть у меня.
Поставим себе такую задачу:
Диапазон выходных напряжений в режиме БП практически от 0 до 24В. А чего мелочиться, мало ли что нам понадобится запитать или зарядить. Отдельно нужно иметь возможность регулировать напряжение в режиме зарядного, от 12,4 до 15,9В более точно, а то при шкале от 0 до 24В сильно не разгуляешься. Зачем ставить два переменных резистора если можно обойтись одним? Для всех типов автомобильных и гелевых аккумуляторов должно этого диапазона хватить. А то понаделали их различных: свинец-свинец, кальций–свинец, кальций-кальций и т.д., а мы думай сколько делать на выходе.
И ещё, хоть я лично и сомневаюсь в необходимости реанимации полудохлых аккумуляторов, но решил реализовать примочку. А вдруг и правда однажды поможет?
Что же нужно для этого сделать. В основном всё тоже самое с небольшими отличиями.
Первым делом, выпаять все ненужное. Оставить только канал 12В и TL494 с обвязкой.
Чтобы получить 24В с сохранением должного запаса регулировки одной 12В обмотки будет маловато. Потому что, на ней размах импульсов как раз 24В, да и то при условии нормального напряжения в сети. Можно конечно мостовую схему и хоть 36В получай. Но при этом вся нагрузка только на 12В обмотки, причём без передыха, а не поочерёдно как сейчас. Но ведь у нас же бездействуют обмотки от 5В канала. Непорядок, надо их задействовать. А главное, после некоторых шевелений извилинами, оказалось что это, совсем несложно сделать.
Изначально схема выходной части БП в упрощённом виде выглядела так:
Рис 2.
Синими прямоугольниками очерчены мощные сборки, остальные диоды для отрицательных напряжений маломощные, обычно на 1-2А стоят. Мы её немного модернизируем.
Все обмотки трансформатора собраны в косичку, которая соединена с общим проводом, отмечено зелёным. Нет, расплетать мы её не будем, а просто выпаяем из платы. Теперь она оторвана от земли, а значит фактически, мы получили последовательное соединение 12В и 5В обмоток, с отводом, хоть он и не от середины. Это не традиционно, но и не запрещено! Теперь, если на места слабых диодов канала -5В поставить диоды из канала 5В и соединить их с массой, то получаем пару обмоток соединённых последовательно с амплитудой импульсов примерно в 34В. С этого момента получение 24В на выходе – не проблема. Обмотки по-прежнему будут работать все, а не часть. Это позволит получить больший ток на выходе без перемотки трансформатора.
Вот схема с изменениями и дополнениями:
Рис 3.
Правда, есть одна незначительная трудность, сборку из канала 5В напрямую применить не выйдет. Потому что, для минусового плеча, нам нужна сборка с общим анодом, а там стоит, с общим катодом. Понадобится две таких сборки. Выводы анодов можно соединить и получить обычный диод. Либо просто взять подходящие детали из другого места. Я поступил ещё более изощрённым способом. Валялись у меня две сборки на 10А и 40В. У каждой был пробит один диод. Вот оставшиеся я и использовал как обычные диоды. Безотходное производство сохраняет экологию планеты и экономит копеечку, а она рубль бережёт.
С ДГС я тоже произвёл некоторые манипуляции. Хотелось увеличить стабильность работы БП при малых токах, да и напряжение у нас стало больше традиционного для компьютерного блока питания. Поэтому обмотки канала 12В и 5В соединил последовательно. Остальные, тонкие, не используются.
Модернизацию силовых цепей на этом можно было бы и закончить, но есть ещё один сюрприз. Наш конденсатор на 16В, который обычно стоит в канале 12В, 24В не переживёт. Поэтому его необходимо заменить на 35-ти вольтовый. Емкость, на ваш вкус, у меня был на 2200мкФ его и установил, С7 по схеме.
Ещё нужно запитать вентилятор. Так как на выходе у нас теперь от 0 до 24 может быть, то туда его подключать не стоит. Где же взять подходящее напряжение? Кто ищет, тот всегда найдет! Питание будет двойным. Во первых, через диод D1 от 5В дежурки, во вторых от основного источника через D2, как можно видеть на схеме он подключается к выпаянной косичке. Первый будет обеспечивать вентилятор минимальным напряжением в отсутствие нагрузки, второй во время реальной работы. На холостом ходу у нас получится около 4.5В, а при появлении нагрузки, вырастет до 9-9.5В. Возможно этого окажется мало для полной загрузки в 240Вт. Но себе я решил сделать так, потому что грузить на всю не планирую, зато будет тише работать. Если вы планируете грузить по полной, то можно будет сделать немного по другому. Надо анод D2 подключить не к косичке, а к катоду Br1, затем поставить стабилизатор на 12В и уже от него запитать вентилятор. Не забудьте о радиаторе, греться будет не сильно, но заметно.
Теперь остаётся только изготовить небольшую плату управления и переднюю панель устройства. Смотрим схему. Кнопка S1 переключает режим работы с блока питания на зарядное устройство. В режиме «БП» таймер заблокирован и выходное напряжение изменяется от 0 до 24В. При включении режима «Зарядное» диапазон регулировки изменяется на 12,4-15,9В и разрешается работа таймера на NE555. Он позволяет с помощью переменного резистора Р1 устанавливать время отключения БП и одновременного подключения разрядной нагрузки на время от 2 до 50% цикла.
Например, если мы выставим 10%, то 9:10 времени будет идти заряд аккумулятора, а 1:10 времени его разряд через нагрузочные лампы. Это немного увеличит время его зарядки, но возможно продлит срок его службы. Мнения есть самые разные по этому поводу, какое из них правильное, я не знаю. Но часто люди просят чтобы было, так почему бы и не сделать.
Лампы использовал на 12В, но поставил их последовательно, для того чтобы не полыхали в полный накал. Слепит глаза и есть шанс ускоренного перегорания из-за частого включения-выключения. Следует иметь в виду, что по этой причине лампы будут гореть гораздо слабее и тока обычного для их мощности не заберут. Например при 10Вт лампах ток разряда будет около 0,6А, а при 35Вт не более 2А.
Что индицируют светодиоды, написано на схеме. Описывать работу таймера и делителей опорного напряжения, думаю, смысла нет. Там всё традиционно. Единственное отличие от предыдущих схем в том, что при регулировке выходного напряжения меняются не пропорции делителя входного напряжения, а опорное напряжение на 2-й ноге. Это позволило делать регулировку практически от 0В и легко переключать диапазон регулировки выходного напряжения. В схеме защиты от КЗ ничего нового тоже нет. Она уже встречалась не раз.
По используемым деталям. Смотрим схему, там все номиналы подписаны. Все переменные резисторы с линейной характеристикой. Транзистор Q1 хоть и работает в ключевом режиме, но небольшой радиатор я ему выделил.
Теперь немного по конструкции устройства.
Приборов индикации и регуляторов получилось довольно много и разместить это всё внутри мне показалось очень затруднительным. Решил сделать выносную переднюю панель где и разместить плату с таймером и индикацией, переменные резисторы и т.д. Измерения габаритов деталей показали, что расстояния в 18мм будет достаточно. Далее в программе FronDesigner 3.0 создал проект передней панели и распечатал. Соединяется панель с устройством через разъём VGA. Одна часть была выпаяна из дохлой материнской платы, вторая – внутренности купленного когда давно сборного разъёма для ремонта поломанных кабелей VGA мониторов. Один остался неиспользованным, вот и сгодился. Можно конечно использовать и другой, главное чтобы хватило количества контактов. Мне было нужно 11, а в VGA их 15 штук.
Компоненты готовы к сборке, осталось только соединить в одно целое:
Фото 3.
Выходные клеммы, панельки для ламп нагрузки и радиатор для Q1 разместились внутри свободного места БП. И крепятся к его крышке. Панельки для ламп были вынесены наружу по ряду причин:
- Не греть дополнительно воздух внутри БП
- Иметь возможность оперативно менять нагрузку, лампы для этих панелек видел в продаже на 10Вт, 20Вт и 35Вт. Возможно есть и другие.
- Можно оперативно удалить эти лампы, тогда никакого разряда не будет происходить вообще.
Все необходимые соединения смонтированы, можно скручивать дальше.
Фото 4.
Что и было сделано:
Фото 5.
Устройство уже прошло полевые испытания и показало свою работоспособность в обоих режимах. Аккумуляторы заряжало и светодиодную ленту на 12В 6А питало не напрягаясь. Тихо и не греется, то, что я и хотел. Режим тренировки опробовать не довелось. Не на чем. Так что, если кто будет пробовать, не забудьте поделиться результатами.
P.S. Совсем недавно, ещё одно применение нашлось. Заряжал им переделанный на Li-on батареи аккумулятор шуруповёрта. Получилось пять банок последовательно по 2А/ч, вместо 15шт. Ni-Cd на 1,2А/ч. Выставил в режиме «БП» напряжение на 21В и ток ограничил на 3А. Аккумуляторы быстро зарядились и при этом были чуть тёплые. Если ставить ограничение на 1-2А, то вообще не нагреваются, но дольше заряжаются. Момент окончания зарядки видно по убывающему току. Изначально он идёт на уровне выставленного ограничения.
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |