Кондиционер на элементах Пельтье своими руками
Это полноценный и настоящий кондиционер, в отличии от тех, которые в большом количестве приводятся в интернете. Тут нет не бутылок с ледяной водой, ни самого льда. А принцип работы довольно схож с бытовыми моделями. Скажу больше, что раньше, на грузовых автомобилях применялись похожие кондиционеры с низковольтным питанием на элементах Пельтье.Если вы не знакомы с этим элементом, то крайне рекомендую ознакомиться поближе. Если в двух словах, это термоэлектрический модуль. На вид квадратный, плоски, с двумя выходящими проводами. При подаче напряжения на которые, одна сторона модуля начинает нагреваться, а вторая охлаждаться, причем прямо пропорционально.
На этом принципе и основано устройство охладителя, о котором пойдет речь ниже.
Понадобится
- Элементы Пельтье — 6 штук. Модель TEC1-12705 рассчитана 12 В и 60 Вт, купить можно тут — AliExpress.
- Блок питания от компьютера или любой другой на 12 В и мощностью не менее 400 Вт, купить можно тут — AliExpress.
- Провода 2,5 кв.мм. — пару метров.
Это из основного, остальные детали и инструмент смотрите по тексту.
Изготовление кондиционера на элементах Пельтье
У нас будет довольно мощная модель, состоящая из 6 элементов размером 40х40 каждый. Под них необходимо подобрать два массивных радиатора, для обжатия элементов с обеих сторон. Я буду использовать один большой и два маленьких.
Примерно так они будут выглядеть при совмещении.
Из ДСП необходимо вырезать прямоугольник.
В котором сделать ещё прямоугольник под два радиатора, чтобы они плотно входили в него.
С обратной стороны.
Это будет разделительный барьер — холодной стороны от горячей.
Чтобы радиаторы не проскакивали в отверстие, нужно приклеить сбоку по две полосы из алюминиевого профиля. Купить его не составит труда в строительном магазине.
Разводим двухкомпонентный клей на основе эпоксидной смолы (холодная сварка). И склеиваем сначала два радиатора меду собой, а потом уже к ним приклеиваем кусочки профиля.
К большому радиатору также приклеиваем профиль. Вот так все выглядит. Стороны профиля по обе стороны должны находится примерно в онной плоскости.
Сверлим этот бутерброд насквозь: две планки на обеих сторонах вместе с ДСП.
Далее смазываем радиаторы теплопроводящей пастой и устанавливаем подряд элементы. Стороны не путаем, все модули должны смотреть в дну сторону.
Покрываем их сверху новым слоем теплопроводящей пасты.
И прижимаем вторым радиатором. Стягиваем все аккуратно винтами с гайками.
Получилась вот такая конструкция с 12-ю выводами.
Для удобства подключения используем клеммную колодку.
Как вы возможно обратили внимание — трехконтактную. И все модули в ней подключены общим к нижней шине. А красными выводами 3 элемента к верхнему контакту, а три других к среднему. Такое деление сделано специально для нашего блока питания компьютера, который имеет две шины по 12 В и никак не обязательно.
В ДСП просверлим отверстие под провод и подключим его к колодке.
К радиаторам с обеих сторон прикрутим вентиляторы.
На блоке питание собирается так же воедино минусовые провода и плюсовые по два канала.
Подключаем к выходу также через соединительную колодку.
Все, почти готово.
Для запуска блока, в нашем случае, необходимо перемычкой закоротить выходы выключателя.
Установка кондиционера
Устанавливается кондиционер в любое окно. Для этого из фигурного алюминиевого профиля делается такая скоба.
Которая будет четко опираться в створки и не давать всей конструкции выпасть.
Чтобы закрыть щель не до закрытого окна, вырезается полоска из поликарбоната или другого пластика по ширине кондиционера. И вставляется в паз окна.
Равой прижимаем всю конструкцию.
У меня, как видите, раздвижное окно, вам же придется придумать свою конструкцию крепления.
Главное чтобы одна сторона прибора была на улице, а другая дома. И не было сквозняка через щели.
Результат работы
Кондиционер довольно мощный, все таки применено 6 модулей Пельтье. Вся электрическая мощность составила 360 Вт, что не мало. Хотя сравнивать его с тепловым насосом не приходится из-за очень низкого КПД. Но даже такой модели хватит чтобы охладить небольшую комнату.
Вот результат при первом запуске: начальная температура в помещении 24 градуса Цельсия.
Примерно через час работы температура упала до 20 градусов, что является, на мой взгляд, отличным результатом!
Смотрите видео
Кондиционер на элементах пельтье — Вентиляция и кондиционирование
Доброго всем здоровья. Вообще это не мой проект, это мой кум такой умный, я тут играю роль принеси, подай ну и можешь быть свободен.Но я честно активно принимал в нём участие и на моей территории. Короче с картинок всё понятно. Четыре элемента Пельтье, два радиатора, две ёмкости для охлаждающей жидкости,кусок текстолита, пару болтиков, помпочка, бп. от компа и млинок. В макете добились 5 градусов Цельсия на выходе, при 25 С окружающей среды. Штучка интересная. Кум ждёт с поднебесной бп. мощней и турбинку взрослей, для более интенсивного отбора холодного воздуха с радиатора.
Кондиционер на элементах Пельтье своими руками
Это полноценный и настоящий кондиционер, в отличии от тех, которые в большом количестве приводятся в интернете. Тут нет не бутылок с ледяной водой, ни самого льда. А принцип работы довольно схож с бытовыми моделями. Скажу больше, что раньше, на грузовых автомобилях применялись похожие кондиционеры с низковольтным питанием на элементах Пельтье.Если вы не знакомы с этим элементом, то крайне рекомендую ознакомиться поближе. Если в двух словах, это термоэлектрический модуль. На вид квадратный, плоски, с двумя выходящими проводами. При подаче напряжения на которые, одна сторона модуля начинает нагреваться, а вторая охлаждаться, причем прямо пропорционально.
На этом принципе и основано устройство охладителя, о котором пойдет речь ниже.
Понадобится
- Элементы Пельтье — 6 штук. Модель TEC1-12705 рассчитана 12 В и 60 Вт, купить можно тут — AliExpress.
- Блок питания от компьютера или любой другой на 12 В и мощностью не менее 400 Вт, купить можно тут — AliExpress.
- Провода 2,5 кв. мм. — пару метров.
Это из основного, остальные детали и инструмент смотрите по тексту.
Изготовление кондиционера на элементах Пельтье
У нас будет довольно мощная модель, состоящая из 6 элементов размером 40х40 каждый. Под них необходимо подобрать два массивных радиатора, для обжатия элементов с обеих сторон. Я буду использовать один большой и два маленьких.
Примерно так они будут выглядеть при совмещении.
Из ДСП необходимо вырезать прямоугольник.
В котором сделать ещё прямоугольник под два радиатора, чтобы они плотно входили в него.
С обратной стороны.
Это будет разделительный барьер — холодной стороны от горячей.
Чтобы радиаторы не проскакивали в отверстие, нужно приклеить сбоку по две полосы из алюминиевого профиля. Купить его не составит труда в строительном магазине.
Разводим двухкомпонентный клей на основе эпоксидной смолы (холодная сварка). И склеиваем сначала два радиатора меду собой, а потом уже к ним приклеиваем кусочки профиля.
К большому радиатору также приклеиваем профиль. Вот так все выглядит. Стороны профиля по обе стороны должны находится примерно в онной плоскости.
Сверлим этот бутерброд насквозь: две планки на обеих сторонах вместе с ДСП.
Далее смазываем радиаторы теплопроводящей пастой и устанавливаем подряд элементы. Стороны не путаем, все модули должны смотреть в дну сторону.
Покрываем их сверху новым слоем теплопроводящей пасты.
И прижимаем вторым радиатором. Стягиваем все аккуратно винтами с гайками.
Получилась вот такая конструкция с 12-ю выводами.
Для удобства подключения используем клеммную колодку.
Как вы возможно обратили внимание — трехконтактную. И все модули в ней подключены общим к нижней шине. А красными выводами 3 элемента к верхнему контакту, а три других к среднему. Такое деление сделано специально для нашего блока питания компьютера, который имеет две шины по 12 В и никак не обязательно.
В ДСП просверлим отверстие под провод и подключим его к колодке.
К радиаторам с обеих сторон прикрутим вентиляторы.
На блоке питание собирается так же воедино минусовые провода и плюсовые по два канала.
Подключаем к выходу также через соединительную колодку.
Все, почти готово.
Для запуска блока, в нашем случае, необходимо перемычкой закоротить выходы выключателя.
Установка кондиционера
Устанавливается кондиционер в любое окно. Для этого из фигурного алюминиевого профиля делается такая скоба.
Которая будет четко опираться в створки и не давать всей конструкции выпасть.
Чтобы закрыть щель не до закрытого окна, вырезается полоска из поликарбоната или другого пластика по ширине кондиционера. И вставляется в паз окна.
Равой прижимаем всю конструкцию.
У меня, как видите, раздвижное окно, вам же придется придумать свою конструкцию крепления.
Главное чтобы одна сторона прибора была на улице, а другая дома. И не было сквозняка через щели.
Результат работы
Кондиционер довольно мощный, все таки применено 6 модулей Пельтье. Вся электрическая мощность составила 360 Вт, что не мало. Хотя сравнивать его с тепловым насосом не приходится из-за очень низкого КПД. Но даже такой модели хватит чтобы охладить небольшую комнату.
Вот результат при первом запуске: начальная температура в помещении 24 градуса Цельсия.
Примерно через час работы температура упала до 20 градусов, что является, на мой взгляд, отличным результатом!
Смотрите видео
Кондиционер для автомобиля на элементах Пельтье
У автора канала “Cars and Upgrade” в машине нет кондиционера. Поэтому он решил сделать для своего авто на основе 3 элементов пельтье кондиционер, или охладитель с вентилятором. О принципах работы Пельтье и о том, где его дешево продают, читайте тут. Чтобы хотя бы прохладный воздух создать в салоне. Он не испытывал больших надежд на успешный результат своего проекта, но решил провести хотя бы экспериментальную проверку идеи. Использовал радиатор от водяного охлаждения компьютеры. Изготовил металлический контейнер для воды.
Элементы пельтье по 6 ампер каждый. Кулеры и радиаторы. Насос качает воду, перегоняет по кругу, охлаждает радиатор. Он должен был стоять в салоне, где фильтр для воздуха. Казалось бы, должно всё было бы работать. Термоэлементы пельтье не справляются. Есть некоторые охлаждение воды, на 10-15 градусов. Воздух охлаждается не так заметно. А для небольшого помещения внутри дома это неплохо, но в машине не будет чувствоваться эффект прохлады. Блок питания на 30 ампер. Он уже нагрелся. 6 ампер берёт один элемент пельтье. Умножить на 3 будет 18 ампер. Плюс кулера. Так что нагрузка на генератор будет очень большая. Это неэффективно.
Эксперимент проводится дома. Если температура в помещении 28 градусов, воздух выдувается из кондиционера не меньше 15 градусов. Дует прохладный воздух, но всё равно это недостаточно. Если всю конструкцию установить под капот автомобиля, поскольку происходит нагрев, всё равно, мощности для обеспечения комфорта в салоне автомобиля недостаточно.
Автор видео уже просмотрела некоторые ролики и послушал комментарии мастеров, которые уже изготавливали кондиционеры для своих машин. Некоторые из них говорят, что у них ничего не получилось. Другие утверждают, что кондиционер на элементах пельтье нормально работает в машине. Но опыт показывает, что даже 4 элемента пельтье не дают нужный режим. Мало мощности и слишком большой расход. Мастер предполагает, что есть установить 10-12 элементов, используя данную систему, может быть какой-то эффект охлаждения автомобиля. Ну возможно, придется менять конструкцию, меняя генератор или другие части. Это связано с большим расходом электроэнергии на их функционирования. Мастер предполагает, что дешевле и эффективнее будет поставить нормальный машинный кондиционер.
Далее смотрите ролик про устройство, работающее на двух Пельтье.
Еще одна установка для охлаждения, которую автор назвал прототипом кондиционера на 2 элементах пельтье. Видео снято на канале Hurrygun Tank. Технические характеристики, которые необходимо учитывать при изготовлении таких устройств. Один элемент пельтье потребляет 5 ампер. Напряжение питания 12 вольт. Соответственно, два элемента будут забирать 10 ампер. При этом разница температур, которые можно получить в салоне автомобиля составляет 4 градуса цельсия. Так показал опыт автора видеоролика. Можно сделать вывод, что нецелесообразно использоватьтермоэлементы пельтье для создания портативных кондиционеров для авто.
12 вольтовый кондиционер своими руками
Сегодня мы расскажем, как сделать 12 вольтовый кондиционер своими руками.
Привет всем! Сегодня я хочу рассказать как из двух радиаторов от настольного компьютера, двух кулеров и элемента Пельтье сделать 12 вольтовый кондиционер, мощность этого кондиционера 30 ватт но размеры его 5 на 5 см …если его установить в форточку окна\ дело в том что в одну сторону кулер гонит теплый воздух чтобы в помещении был холодный и они не перемешивались..\ между оргстеклом и поставить 5 таких элементов это будет уже 150 ватт.
Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока.
На радиатор где больше кулер я приклеил элемент на теплопроводный клей
на другую сторону я тоже приклеил радиатор с меньшим кулером
включаем в блок питания
и уже через минуту из маленького кулера пошел прохладный воздух 19 градусов.
Кулеры должны выдувать каждый в другую сторону от элемента. Если его вмонтировать в люк крыши автомобиля кулер сверху не нужен так как при езде радиатор сам будет охлаждаться ..Конденсата с холодной стороны я так и не заметил -наверно он улетучивается вместе с воздухом. В квартире теплую сторону радиатора можно спрятать в вентиляционном отверстии на стене.. чтобы теплый воздух выходил на улицу.
Автор статьи “Сделай сам: 12 вольтовый кондиционер своими руками” Jurei-678
Смотрите так же:
Jurei-678
Привет всем ! Я занимаюсь разработкой, дизайном и изготовлением светодиодных светильников для дома, дачи и растений. Мои светильники для растений трудятся в Норвегии, России, и Прибалтике. Так же могу по Вашим эскизам изготовить любой светильник из металла,пластмассы или дерева. Стаж светодиодного творчества 5 лет. Мой скайп juri-1958. Почта [email protected].
Новые самоделки автора Jurei-678 (Смотреть все)
Охладитель испарительного типа своими руками или попытка сделать кондиционер!
Здравствуйте, уважаемые посетители сайта «в гостях у Самоделкина»!Сегодня я хочу рассказать о моей попытке сделать … кондиционер!
Конечно же, полноценным кондиционером моё изделия назвать нельзя! Скорей — это испарительный охладитель воздуха.
Создать кондиционер в кустарных условиях вряд-ли возможно. Но опять настало лето, а вместе с ним — и жара! В моей мастерской тоже стало жарко. Вентилятор даёт мало эффекта — только на близком расстоянии от него есть эффект прохлады. Чуть дальше же — всего-лишь поток тёплого воздуха! И в мои «мозги самодельщика» запала «идея-фикс» — попытаться сделать какое-то охлаждающее устройство!
Идею с охладителями, использующими холодную воду, или лёд, я сразу отбросил — их «зарядка» потребует слишком много работы и времени, а рабочий цикл между обслуживаниями слишком короток!
Поэкспериментировав с элементами Пельтье, я тоже отбросил эту затею. Уж больно мал у них КПД (если использовать их в качестве охладителя). Львиная доля энергии преобразовывается в тепло!!! И только какая-то малая часть — в холод! То есть, греют они в несколько раз сильнее, чем охлаждают! В условиях небольшой комнаты пришлось бы прилагать какие-то усилия для отвода горячего воздуха наружу! (Делать какой-то термоизолированный канал, ставить дополнительные вентиляторы…. Не стоит оно того, учитывая малую мощность получившегося на выходе устройства…. Да и питание их — задача ещё та!))) Ведь, потребляют они нешуточные токи при малых напряжениях, а это значит, нужен мощный блок питания (дополнительный источник тепла, кстати))))).
Осталось одно — попробовать собрать охладитель испарительного типа, действие которого основано на интенсивном испарении жидкости. Всем известно, что при испарении (переходе вещества из одного агрегатного состояния в другое) этим веществом поглощается энергия! Именно поэтому мы чувствуем холодок, если нам на кожу дует ветер — ведь ветром уносятся частицы влаги, выделяемой нашими потовыми железами. Наш пот для этого и предусмотрен — испаряясь, он охлаждает поверхность кожи.
Я воочию наблюдал этот эффект, охлаждая напитки при «выездах на природу». Достаточно на жаре уложить бутылки на землю, накрыть мокрой тряпкой и не давать ей высохнуть полностью — постоянно её смачивать. Через какое-то время бутылки станут значительно холоднее, чем окружающий воздух!!! И чем та вода, которой смачивали тряпку!!
Т.е., это РАБОТАЕТ!!!
«Погуглив» на эту тему, я узнал, что кондиционеры, работающие на этом принципе выпускаются даже серийно и достаточно широко используются в странах с сухим климатом! В нашей-же местности их интенсивно использовать не получится, ввиду высокой относительной влажности воздуха! Ведь для интенсивного испарения воздух должен быть сухим! А если он уже содержит большое количество водяных паров, испарение будет слабым…
Но, всё-же БУДЕТ, подумал я! ))). Ведь, относительная влажность воздуха у нас не 100%! Влажные вещи, развешенные в тени, всё-же сохнут! (А, например, на Анталийском побережье Средиземного моря я столкнулся с тем, что вывешенная после стирки в тени майка к утру оставалась такой-же влажной даже при температуре воздуха +35 градусов !!!! Испарения попросту нет!! Горячий воздух уже впитал в себя из моря столько влаги, сколько способен удерживать!!! И что-то высушить там можно только на прямых солнечных лучах и ветерке!)
….Ну что же!! Раз я не уверен в результате, значит и делать нужно опытный образец из того, что «валяется» !!)))). Чтобы не жалко потом было…
И решил я сделать мой кондиционер из следующего:
1. Пластиковая канистра ёмкостью 30 литров.
2. Форточный вентилятор времён СССР.
3. Обрезки пластикового короба для электрической проводки.
4. Обрезки поролона.
5. Старые вентиляционные решётки.
6. Старое зарядное устройство от «Нокии».
7. Погружной насосик для аквариума (пришлось купить!))))
8. Капельница (Система для внутривенных инъекций. Тоже купить пришлось)))
9. Губчатые салфетки.
10. Коробка для наружной электропроводки.
В первую очередь, нужен вентилятор, который будет обеспечивать поток воздуха и способствовать испарению. У меня с Советских времён валяется старый форточный вентилятор, которые тогда вставляли в кухонные форточки строители. Жильцы их, как правило, вынимали и они валялись ненужными.))) Вот и у меня был такой. Валялся за ненадобностью — и выбросить рука не поднимается, и использовать….тоже рука не поднимается!)))) Так что, я даже обрадовался — хоть какую-то пользу из него извлеку!
С выбором корпуса я даже сильно не заморачивался!))) В него должна будет наливаться вода, к тому-же, его размеры должны прозволить разместить в нём вентилятор. А значит — это будет большая канистра, которых «есть у меня» )))).
Начал я с того, что вырезал в боковой стенке канистры круглое отверстие и поместил туда вентилятор:
(Вырезанный отсюда пластиковый кружок послужил днищем в другой моей самоделке — «Термосе для двухлитровых бутылок» )))))
Изначально, в «сырой версии» я решил, что вентилятор будет всасывать воздух из канистры. Видимо, сработал тот момент, что тогда вентилятор останется с крышкой, и в транспортном положении его можно будет закрывать. (….э-э-э… а зачем???))))). Но, подумав, я всё-же, решил, что вентилятор должен нагнетать воздух внутрь корпуса — ведь ему самому совсем не будет полезным омываться влажным, мокрым воздухом, в ещё, возможно, и с брызгами воды. Поэтому крышку с него я снял, и установил его наоборот, мотором наружу:
Выброс увлажнённого (надеюсь, и охлаждённого))) воздуха будет с обратной стороны корпуса. Изначально я думал просто насверлить в стенках канистры отверстий, но, подумав, решил не делать так. Ведь внутрь должен быть доступ для обслуживания! В условиях высокой влажности и осевшей пыли там будет скапливаться грязь и плесень…. Поэтому нужно сделать некую «дверьку», и сменную испарительную «кассету» …
Порывшись в своих «запасах нужного мусора», я нашёл несколько старых вентиляционных решёток:
Не представляя пока в деталях устройство испарительной части, я всё-же решил, что решёточка эта будет установлена в любом случае. Хотя-бы потому, что обеспечит защиту от возможных брызг воды. Поэтому я вырезал в противоположенной боковой стенке канистры квадратное отверстие под размеры этой решётки:
И только тут понял, что я сделал бы это обязательно в любом случае! Ведь вентилятор я пока просто вложил в «посадочное», а, чтобы его закрепить, нужен доступ изнутри с отвёрткой и шурупами!)))
Переходим к изготовлению испарительной кассеты. (Как-то само собой у меня за ней закрепилось это название.))) Изначально я задумал сделать её из поролона. Благо, целый большой мешок его обрезков я когда-то подобрал на мебельном предприятии, чтобы использовать как мочалки в хознуждах. Обрезки были различных размеров, но все большой толщины:
Подумав, я решил, что поролон всё-же не сможет тянуть влагу капиллярно в нужных мне количествах, а потому нужен некий насос, подающий воду наверх. Была мысль что-то намудрить самодельное…(и уже даже придумал кое-что)… Но, обратившись к услугам «друзей из Поднебесной» я увидел у них готовое решения за копейки… Насос был куплен, благо, спешки не было — погода сменилась и весь оставшийся июнь шли промозглые дожди.))))
А пока я экспериментировал с испарительной кассетой. Выяснилось (да и предполагалось)))), что продуть воздух через поролон (а, тем более, мокрый) просто не реально. Я решил насверлить в нём отверстий. Именно насверлить, потому что, если их прожечь, к примеру, паяльником, то края получатся оплавленными! А мне там нужны «открытые поры».
«Сверло по поролону» я сделал из вот такого жестяного цилиндра (не знаю, от чего он был. Скорей всего — корпус контрольной лампы каких-то древних приборов), который валялся в «металлоломе»:
Один его край я заточил:
Осталось придумать, как закрепить его на дрель…
Решение нашлось легко. Я обратил внимание, что внутрь можно плотно забить черенок от лопаты. (У меня всегда есть в наличии много разнообразных черенков от садового инструмента. Это очень хорошее «сырьё» для изготовления различных рукояток к напильникам и прочим стамескам и отвёрткам))))
Обрезок черенка был забит внутрь, в нём просверлено осевое отверстие, а в него вставлен обрезок шпильки М10 и зажат гайками с обоих сторон. Получился довольно крепкий хвостовик:
Зажав его в дрель, я легко насверлил отверстий в поролоне:
Теперь корпус… Его я решил изготовить из обрезков пластикового короба для электрокабелей больших размеров:
Склепав получившуюся коробку вытяжными заклёпками, я обрезал боковые стенки короба до минимума и приклепал теми-же заклёпками с одной стороны основание вентиляционной решётки:
В получившуюся кассету я вставил мой дырявый поролон, и поэкспериментировал, направив сквозь него струю воздуха из вентилятора, и поливая сверху водой. «Вылезла» ещё одна проблема — как выяснилось, поролон не в состоянии достаточно сильно удерживать капли воды. И на выходе поток воздуха выносит просто таки огромное количество брызг. Мне же нужны не брызги, а испарение! На ум пришло использовать в месте контакта с воздушным потоком гигроскопичную губку с более плотной структурой. Для этого были куплены вот такие губчатые салфетки, порезаны, свёрнуты в трубочку и вставлены в отверстия в поролоне.:
Эксперименты показали, что это — то, что нужно!!! Они полностью пропитываются влагой, но не позволяют каплям срываться с их поверхности, потому что «лишняя вода» просто уходит вниз по поролону, обтекая трубочки с боков.
Так как салфеток было куплено несколько упаковок, возникла мысль сделать из них кассету другого типа. Для этого я изготовил ещё один такой-же корпус. Потом распилил одну из решёточек наполовину и вклеил горячим клеем (а куда ж без него!)))) в верхней и нижней части. Так как получившиеся половинки были слишком длинными и их пришлось обрезать, то из обрезков я склеил ещё одну такую планку и поместил её в середине. Нарезав салфеток, я протянул их сквозь три решётки. Так как решётки имеют форму жалюзи, салфетки изогнулись зигзагом:
Эту кассету я поместил перед самой решёткой, а вторую (под поролон) сзади, склепав их вытяжными заклёпками в единое целое:
Т.е., воздух, нагнетаемый вентилятором, сперва пройдёт сквозь влажные трубочки в поролоне, а потом — между изогнутыми, пропитанными влагой, губками. При этом, подтягивая и ослабляя их в нужных местах, я расположил их так, чтобы они немного изменяли воздушному потоку направление движения. Так большее количество воздуха будет «тереться о влажные стенки», унося с собой молекулы влаги и оставляя взвешенную в нём пыль. Если устройство «получит право на жизнь», можно будет изготовить вторую такую кассету, чтобы менять их для промывания.
А пока суть да дело, приехал из Поднебесной погружной мининасос:
Насосик оказался именно таким, как мне и нужно. Он рассчитан на напряжение до 6-ти вольт, но при подаче на него напряжения 5 вольт, обеспечивал как раз нужный мне, слабый поток воды.
Для его запитки я использовал валяющееся старое «зарядное устройство» от кнопочной старой «Нокии»:
Провод был припаян к проводу насоса, соединение изолировано термоусадочной трубкой, в которую я перед усадкой натолкал силикона. Усадку произвёл, начиная с середины к краям. Вытолкнутые по краям излишки герметика приплющил, обеспечивая дополнительную защиту от влаги…
Насос был установлен на дно канистры. Провод от него выведен через отверстие, в котором вставлен вентилятор, а блок питания размещён в стандартной коробке для наружной электропроводки, которую я закрепил заклёпками под вентилятором:
Если изделие «получит путёвку в жизнь», то там-же я врежу два клавишных выключателя с индикацией — один для включения всего прибора (чтоб из розетки не дёргать))), второй — для включения насоса (А вдруг, я захочу использовать его просто как вентилятор, без увлажнения потока!). Но пока оставим так…
Подачу воды в верхнюю часть кассеты я решил осуществить через гибкий шланг от системы для внутривенных инъекций (в простонародии — трубка от капельницы)))).
Пробив отвёрткой отверстие в верхней части поролоновой кассеты, я пропустил в него шланг, заранее сделав в нём ножом боковое отверстие примерно в 10-ти сантиметрах от края. Отверстие это оказалось внутри поролона, и через него часть воды будет уходить в «первую ступень» испарительной кассеты, а конец шланга пропустит воду дальше — в губчатую «вторую ступень»:
Просто положив шланг наверх загнутых верхних частей губок, я прикрыл его, вставив сверху отрезок поролона:
Испытания показали, что насос довольно быстро смачивает всю кассету водой. Лишняя влага стекает вниз, обратно в канистру.
… Вот, собственно, и всё! Осталось установить кассету в канистру и закрепить. Изначально я хотел поставить в углах «окна» четыре резьбовых заклёпки и закрепить кассету винтами. Но, как выяснилось, именно в этом месте стенки канистры оказались достаточно толстыми — около четырёх миллиметров. Поэтому я просто закрепил кассету оцинкованными шурупами с пресшайбой!
Они нарезали себе резьбу, и, если заворачивать их аккуратно, то такое соединение выдержит огромное количество циклов монтажа-демонтажа (Кассету же нужно будет извлекать для обслуживания).
И тут выяснился ещё один «косяк»!!! Заливная горловина оказалась прямо над кассетой!!! И когда я попытался залить воду, вода потекла сквозь решётку наружу!!!…
С этим нужно что-то делать!!! Не извлекать же кассету каждый раз, когда нужно будет пополнить уровень воды — это ведь не так-то просто, потому что она мокрая и с неё сильно течёт!!!
..Проблему решил при помощи загнутого к боковой стенке обрезка металлопластововой трубы. На его конце я горячим клеем закрепил воронку, сделанную из горлышка пластиковой бутылки:
А саму воронку тем-же клеем вклеил в горловину:
Теперь заливаемая через горловину вода будет отводиться в сторону и стекать на дно канистры мимо кассеты:
А контролировать её уровень можно визуально — белые стенки канистры достаточно «прозрачны».
Вот он и готов… И заправлен водой… Но, как на зло, во второй половине июня у нас испортилась погода — холодно, дождливо….
Наконец, выпал один жаркий солнечный день с температурой воздуха +27.
Испытывал я его в комнате, площадью 17,5 квадратных метров, с высотой потолка 2,7 метра при открытом в откидное положение окне. (Особенность охладителей такого типа в том, что они очень сильно увлажняют воздух, и, в отличии от «обычных» кондиционеров, работающих по принципу теплового насоса, в помещении должна обязательно быть вентиляция! К сожалению, почему-то забыл сфотографировать этот процесс… Просто опишу.
Расположив его на полу, я положил два комнатных термометра — перед вентилятором и перед выпускной решёткой . Оба они показывали температуру 26 градусов Цельсия. После включения его, температура перед решёткой очень быстро снизилась до 23-х градусов и на таком значении осталась. (При этом я «пробуя ладонью ветер», разместил градусники на таких расстояниях, чтобы возле них интенсивность входящего и выходящего потоков воздуха была примерно одинаковой. ).
Т.е., он всё-таки РАБОТАЕТ!!!… Воздух таки охлаждается, пусть и не особо сильно!!!
Но за час работы показания «заднего» термометра снизились всего на один градус! Т.е., за целый час работы мой прибор снизил температуру в комнате всего на один градус…
Но я обратил внимание на то, что уровень воды в нём за час не изменился… (Ну… Или изменился так, что это не было заметным). Т.е., испарение было минимальным…
Думаю, всему виной — высокая относительная влажность воздуха. (Ведь, целую неделю до этого было холодно (+11 — +16) и шли непрерывные дожди! За полдня воздух просто не мог просохнуть!!!)
У меня не было прибора для измерения влажности воздуха, но я закрыл окно, и включил опять мой охладитель. Так и есть — через 15 минут в комнате стало влажно, как в бане! Это прямо ощущалось очень сильно — от влажной духоты стало трудно дышать, хотя градусники, уже отнесённые от него, по прежнему показывали 25°C).
Ну что же… Подожду устоявшейся жары без дождей (если такая будет этим летом) , и когда «воздух просохнет» и станет способен интенсивно впитывать влагу, протестирую его ещё раз и отпишусь!!!
А пока скажу, что получившееся у меня изделие, всё-же имеет право на жизнь!! Поток воздуха из него очень и очень приятен! Что-то наподобие лёгкого бриза с моря.
Кстати, когда я устанавливал решетку так, чтобы она направляла воздух вверх, я преследовал определённую цель — чтобы внутрь канистры скатывались «прорвавшиеся с воздухом» капли воды, если таковые будут. Но «побочный эффект» оказался намного полезнее! ))). Если прибор стоит на полу, то поток увлажнённого воздуха из него очень мягко и «нежно» расходится по комнате! Ощущения намного приятнее, чем от сильного потока, исходящего из обычного вентилятора!!!
Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Элемент Пельтье он же термоэлектрический модуль
Чуть чуть теории.
Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.
Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах — от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности — от десятых долей до сотен ватт.
При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.
Практика.
Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа.
50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось:
Подключаем воду к охладителю к одной стороне элемента Пельтье, а другую ставим на конфорку. К выходу элемента подключаем 10Вт 6 вольтовою лампочку. Результат — наш генератор работает !
Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта.
Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%.
Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…
При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.
Использование термоэлектрического модуля.
Такой термоэлектрический генератор прекрасно помнят те, кто помнит советские совхозы и колхозы. Говорят, в войну немцы не могли понять, как партизаны могут подолгу вести радиопередачи из осажденного леса.
Да, как говорится — если бы нашим ученым платили деньги, то они бы iphone ещё в `85 изобрели бы ! 🙂
Термоэлектрический холодильник
Термоэлектрический холодильник (вариант 2)
Термоэлектрический холодильник (вариант 3)
Автомобильный охладитель для баночных напитков
Кулер для питьевой воды
Термоэлектрический кондиционер для кабины КАМАЗа
В такой «ковшик» наливается вода, ставится на огонь и, пожалуйста, подзаряжай мобильник. Весь секрет в дне, там «зарыт» Пельтье
Давайте поподробней об этой конструкции.
В настоящее время растет интерес к использованию термоэлектрических генераторных модулей в бытовых устройствах. В первую очередь это касается возможности питания маломощных потребителей электроэнергии — радиоприемники, сотовые и спутниковые телефоны, переносные компьютеры, устройства автоматики и т.п. от имеющихся источников тепла. Термоэлектрический генератор, в котором отсутствуют вращающиеся, трущиеся и какие-либо другие изнашиваемые части, позволяет непосредственно получать электричество из любого источника тепла: выхлопных газов двигателей внутреннего сгорания, горячей воды геотермальных источников, «бросового» тепла ТЭЦ и т.п. Руководствуясь опытом, полученным при создании промышленных термоэлектрических генераторов (ТЭГ) различной мощности — от нескольких Ватт до нескольких килоВатт ИПФ КРИОТЕРМ приступила к серийному производству бытового ТЭГ номинальной мощностью 8 Вт. Конструктивно генератор выполнен в виде алюминиевого ковшика с внутренним объемом около 1 л в донной части которого установлены генераторные модули производства ИПФ Криотерм.
Необходимый для работы генератора перепад температур достигается при разогреве ковшика, например, пламенем костра. Вода, нагреваемая внутри ковшика может идти на приготовление пищи или на другие цели. Данный генератор в первую очередь предназначен для использования в глухих, труднодоступных местах для подзарядки элементов питания индивидуальных средств связи и навигации, освещения и т.п. Он незаменим для охотников, туристов, моряков, сотрудников спасательных и специальных служб, вынужденных долгое время находится вдали от источников центрального энергоснабжения.
Преимуществом генератора является малый вес и объем, высокая удельная генерируемая мощность, функциональность и высокая надежность. Конструкция генератора исключает возможность его перегрева при правильном использовании. В качестве дополнительной опции к генератору предлагается ступенчатый стабилизатор напряжения с диапазонами 3 В — 6 В — 9В -12В и переходники для зарядных устройств.
БЫТОВОЙ ГЕНЕРАТОР ТЕРМОЭЛЕКТРИЧЕСКИЙ 1TG-8
Техническая спецификация
Масса без жидкости , кг, не более 0,55
Габаритные размеры, мм
с ручкой
без ручки 250х130х110 ? 123, h=100
Внутренний объем, дм3 1,0
Номинальная генерируемая мощность, Вт, не менее 8,0
Выходное напряжение, В 3,0 ? 12,0
Ток, мА 660 ? 2660
А вот ещё один пример использования .
Из таких небольших термоэлектрических конденсаторов и состоит генератор.
Уже сейчас термоэлектрические генераторы (TEG) благодаря применению новейших материалов способны вырабатывать электроэнергию мощностью до 1000 Вт.
Термогенератор особенно порадует любителей динамичной езды: ведь чем выше обороты мотора, тем больше вырабатывается электроэнергии, которая в будущем может использоваться в гибридных силовых установках, например, для еще лучшей разгонной динамики.
Почти две трети энергии топлива в современных ДВС «улетает» в атмосферу вместе с теплом. Поэтому инженеры BMW вместе со специалистами американского аэрокосмического агентства NASA активно работают над технологиями превращения тепловой энергии выхлопных газов в электрическую. Такие установки имеют еще один позитивный эффект: дополнительное нагревание непрогретого мотора. Пока TEG «окутывает» отрезок выхлопной трубы, но в будущем планируется интегрировать эту систему в катализатор, используя тем самым его тепловой режим. Для более масштабного внедрения данной технологии в автомобиле придется модернизировать днище, расширив в некоторых местах центральный тоннель. Ожидается, что подобная система уже совсем скоро сможет давать 5-процентную экономию топлива, повышая КПД двигателя внутреннего сгорания.
Вот такой он Элемент Пельтье или термоэлектрический модуль!