Гидротаран своими руками: Гидротаранный насос своими руками – Схемы гидротарана . Гидротаран своими руками — Альтернативная энергия — Каталог статей

Схемы гидротарана . Гидротаран своими руками - Альтернативная энергия - Каталог статей

Гидротаран- источник неисчерпаемой чистой энергииЧеловечество столетиями использует силу падающей воды в различных механических устройствах и, в том числе, для получения электрической энергии. Гидростанции, построенные на некоторых реках, непрерывно работаю десятки лет. Видимо поэтому, большинство людей отрицают даже возможность существования или создания принципиально нового энергоисточника «от воды».

С обывательской точки зрения, преобразование потенциальной энергии воды в кинетическую (необходимую, чтобы что-то вращалось), происходит само собой. Для этого достаточно использовать природную разницу высот реки или искусственно ее создать там, где это возможно. При этом всем понятно, что вода должна течь обязательно вниз, то есть по уклону. Ясно и то, что сила воды зависит от перепада высот течения. Давно существует целая наука «гидроэнергетика» об использовании энергии падающей воды.

Однако Природа подарила нам в падающей воде не только источник бесплатной энергии, но и простейший способ преобразования естественной гравитационной энергии. Ведь с точки зрения физики, потенциальная энергия воды и есть аккумулированная в ней гравитационная энергия. Этот способ является, прежде всего, физическим явлением. Раз так, то следует вспомнить, что в окружающем нас зеркально симметричном мире каждое физическое явление существует, как бы в двух взаимно противоположных формах.

Еще в 1775 году, в одном из английских журналов появилась статья Джозефа Уайтхеста (J.Whitehurst) с описанием прибора, изобретенного и выполненного им в 1772 году. Прибор позволял осуществлять подъем воды с небольшой высоты на значительную без подвода какой-либо дополнительной энергии, лишь за счет использования потенциальной энергии воды. За счет, так называемого, явления «гидравлического удара». Но прибор не мог тогда работать полностью автоматически. Этот недостаток был устранен в 1776 году изобретателем воздушного шара французом Монгольфье (J.Montgolfier). В 1797 году им был получен патент на изобретение. Интересно, что в том же году патент на подобное устройство получил в Англии M.Bulton. В 1809 аналогичный патент получили в Америке изобретатели Церни и Халлет (J.Cerneay, S.Hallet). А уже в 1834-м американец Страубридж (H.Strawbridge) запустил промышленный вариант подобного аппарата в массовое производство. Однако в настоящее время считается, что изобретение сделанное именно французом J.Montgolfier является устройством, получившим впоследствии название «гидравлический таран».

Гидравлический таран (Рис.1) состоит из питательного бака с водой 1, нагнетательной трубы 2, ударного клапана 3, нагнетательного клапана 5, воздушного колпака 4 и отводящей трубы 6.



(Рис.1) Принципиальная схема гидравлического тарана
Его работа происходит следующим образом: вода из питательного бака 1 поступает по нагнетательной трубе 2 к открытому ударному клапану 3 и под напором h вытекает наружу с возрастающей скоростью. При некоторой скорости воды давление на ударный клапан превышает силу, удерживающую клапан в открытом состоянии (например, силу пружины), закрывает его и преграждает выход воде наружу. Происходит резкая остановка движущейся воды и, так называемый, «гидравлический удар». В пространстве нагнетательной трубы от ударного клапана 3 до нагнетательного клапана 5 давление воды почти мгновенно поднимается до величины, соответствующему напору H. В результате открывается нагнетательный клапан. Однако на повышение давления вода затрачивает только часть своей скорости. А с оставшейся скоростью она через открывающийся при этом клапан поступает в воздушный колпак 4. Возникшая от клапана 3 волна «гидравлического удара» за некоторое время движения по трубе 2 достигает бака 1 и, отражаясь там от невозмущенной воды, начинает двигаться опять к ударному и нагнетательному клапану, снижая при этом скорость. Таких отражений происходит несколько. За время многочисленных отражений волны, оставшийся объем воздуха в воздушном колпаке сжимается до давления, соответствующему напору H. В свою очередь, вода из колпака под тем же давлением по отводящей трубе 6, поступает на высоту H к потребителю. За счет таких отражений начальная скорость воды в питательной трубе через некоторое время полностью затрачивается на поддержание в трубе повышенного давления. После чего давление воды под клапанами падает чуть ниже атмосферного. В результате, существующее повышенное давление в воздушном колпаке закрывает нагнетательный клапан, а низкое давление под ударным клапаном и механизм открытия (например, сжатая пружина) позволяет ударному клапану открыться. Так вся схема автоматически приходит в исходное состояние. Процесс повторяется вновь. В итоге, при определенной культуре изготовления деталей, вода может подниматься на расчетную высоту H автоматически непрерывно много лет. Движущиеся части тарана — два клапана, проектируются так, что повышение давления в питательной трубе закрывает ударный и открывает напорный клапан, а понижение давления действует в обратном порядке. При этом весь смысл работы устройства заключается в том, что оно поднимает объем воды qH на высоту H, используя энергию объема воды q, находящейся на высоте h.

Своей оригинальностью и простотой работы «гидравлический таран» некоторое время сильно привлекал ученых теоретиков и практиков. В течение XIX столетия было выполнено много теоретических исследований «гидравлического тарана», но до конца 1900 года все они упирались в неизвестность теории «гидравлического удара» в трубах и поэтому не давали правильных результатов. Еще в 1804 году Эйтелвейн (Eitelvein) (Германия) поставил более 1000 опытов и опубликовал ряд эмпирических выводов и формул, большинство которых, как выяснилось уже тогда, было не пригодно для проектирования. Хотя факт существования явления «гидравлический удар» был известен еще в XVIII веке, теория этого явления была разработана впервые русским ученым Николаем Жуковским. Свои теоретические выводы профессор Жуковский проверил и подтвердил специальными опытами в 1897-1898 годах. В 1898 году его теория была впервые опубликована в «Бюллетенях Политехнического общества».

В 1901 итальянский инженер Алиеви (Alievi) опубликовал практически ту же теорию

«гидравлического удара», но применительно к трубопроводам различных силовых установок. Однако опыты, проведенные самим Жуковским и, позднее, другими исследователями в разных странах, полностью подтвердили правильность основных положений именно его теории. Но и она, после опубликования, не получила широкого освещения и признанания. Исследователи и энтузиасты «гидравлического тарана» из года в год по-прежнему ставили эксперименты и находили для своих целей разные не обобщенные эмпирические формулы. В Америке, Австралии и в ряде других западных стран «гидравлический таран», как устройство, способное бесплатно качать воду на высоту, получил развитие в мелиорации и для различных бытовых нужд под названием «ram-pump». В этих государствах и сейчас существует несколько десятков малых компаний, специализирующихся на производстве и продаже «ram-pump». Многие из них при инсталляции своих механизмов используют исключительно собственные формулы. В Интернете, через различные поисковые системы, при вводе слов «гидравлический таран» или «ram-pump», можно найти не только такие компании, но и большое количество публикаций на эту тему.

Можно изобразить и немного по-другому:

Рис. 1. Схема гидравлического тарана и принцип его работы

Несложный и остроумный механизм — гидравлический таран, не нуждаясь в источнике энергии и не имея двигателя, поднимает воду на высоту нескольких десятков метров. Он может месяцами непрерывно работать без присмотра, регулировки и обслуживания, снабжая водой небольшой поселок или ферму.

В основе работы гидротарана лежит так называемый гидравлический удар — резкое повышение давления в трубопроводе, когда поток воды мгновенно перекрывается зас­лонкой. Всплеск давления может разорвать стенки трубы, и, чтобы избежать этого, краны и вентили перекрывают поток постепенно.

Гидравлический таран работает следующим образом (рис. 1). Из водоема 1 вода по трубе 2 поступает внутрь устройства и вытекает через отбойный клапан 3. Скорость. потока нарастает, его напор увеличивается и достигает величины, превышающей вес клапана. Клапан мгновенно перекрывает поток, и давление в трубопроводе резко по­вышается — возникает гидравлический удар. Возросшее давление открывает напорный клапан 4, через который вода поступает в напорный колпак 5, сжимая в нем воздух. Давление в трубопроводе падает, напорный клапан закрывается, а отбойный — открывается, и цикл повторяется снова. Сжатый в колпаке воздух гонит воду по трубе б в верхний резервуар 7 на высоту до 10—15 метров.

Первый гидравлический таран построили в городе Сен-Клу под Парижем братья Жозеф и Этьен Монгольфье в 1796 году, через 13 лет после своего знаменитого воздушного шара. Теорию гидравлического тарана создал в 1908 году Николай Егорович Жуковский. Его работы позволили усовершенствовать конструкцию этого устройства и повысить его кпд.


ГИДРОТАРАН СВОИМИ РУКАМИ

Гидравлический таран настолько прост, что его можно без труда изготовить самостоятельно, почти полностью собрав из готовых деталей, применяемых в водопроводных сетях. Недостающие детали требуют несложных токарных и сварочных работ.


Рис. 2. Детали конструкции гидравлического тарана.

Основным элементом устройства (рис. 2) служит стальной или чугунный тройник 1 (а еще лучше — крестовое соединение, тогда четвертое, нижнее, отверстие закрывают резьбовой заглушкой) с внутренней резьбой 1 1/2 — 2 дюйма. В тройник ввинчивают переходные ниппеля («бочонки») 2 с длинной наружной резьбой—сгонами. К одному сгону подсоединяют подводящий трубопровод диаметром не менее 50 мм и длиной не более 20 метров. Ко второму

— подсоединяют колено (уголок) 3 так, чтобы при установке тарана его свободный торец был горизонтальным: на нем будет смонтирован отбойный клапан. На третьем ниппеле монтируют напорный колпак с клапаном. Все резьбовые соединения перед сборкой очищают металлической щеткой от грязи и ржавчины и обматывают паклей.

Напорный колпак 4 делают из отрезка металлической или пластмассовой трубы диаметром 15—20 сантиметров. Его объем должен быть примерно равен объему подводящего трубопровода. Торцы трубы закрывают крышкой 5 и переходным фланцем 6 с резиновыми прокладками 7 и 7а (кольцо). Колпак стягивают стальными шпильками 8.

Напорным клапаном может служить обратный клапан, выпускаемый для водяных насосов итальянской фирмой «Бугатти» (с внешней резьбой 1 1/2 дюйма) и немецкой фирмой «Ценнер» (диаметром от 15 до 40 мм) — они продаются в магазинах сантехнического оборудования, самодельный клапан-лепесток из куска листовой резины или сливной клапан от туалетного бачка. Конструкция клапана определит размеры и форму переходного фланца, место и способ крепления напорной трубы 9 диаметром 1/2 дюйма. Варианты конструкции показаны на рисунке.

Отбойный клапан собран из двух деталей: корпуса 10а и заслонки 106.Корпус вытачивают из стали или из бронзы. В верхней его части просверлено отверстие диаметром 15 — 20 мм. Внутренняя полость заканчивается конусом с углом порядка 45°. Корпус клапана навинчивается на сгон ниппеля 2. Стальная или бронзовая заслонка имеет форму двойного усеченного конуса диаметром 20—25 мм и массой 100—150 г. Верхний конус заслонки должен иметь тот же угол, что и полость корпуса: только тогда клапан сможет мгновенно перекрыть поток, создав гидравлический удар. В верхнюю часть заслонки ввернуты три центрирующие спицы так, чтобы они входили плотно, но без трения в верхнее отверстие корпуса. В нижнюю — ввернут винт. Настраивают гидравлический таран, меняя массу заслонки.

Для этого на нижний винт надевают свинцовые шайбы. Для запуска гидротарана достаточно приподнять заслонку, давая воде свободно вытекать через отбойный клапан.

Впускное отверстие подводящего трубопровода необходимо оборудовать простым фильтром, защищающим гидротаран от грязи, и заслонкой, перекрывающей воду на зиму. Чтобы слить воду из корпуса тарана и колпака, через нижнее отверстие вводят спицу, открывая ею напорный клапан. Гидравлический таран можно установить стационарно или сделать съемным, предусмотрев отводной канал для воды, текущей из отбойного клапана.

Производительность гидравлического тарана можно ориентировочно оценить по таблице. Она связывает отношение массы воды (m), поднятой гидротараном, к массе воды (М), поступившей из водоема, и отношение высоты подъема воды h к высоте Н ее падения к гидротарану.


m/М 0,3 0,2 0,15 0,1 0,06 0,05 0,03 0,02 0,01
h/Н 2 3 4 6 8 10 12 15 18

Пусть, например, к гидравлическому тарану поступает М = 12 л/мин воды с высоты Н = 1,5 метра. Посмотрим, сколько воды он сможет поднять на высоту 9 метров. Отношению h/Н = 9/1,5 = 6 в таблице соответствует величина h/М =0,1. Это значит, что гидротаран ежеминутно должен подавать на высоту 9 метров массу воды m = 0,1-М =0,1-12= 1,2 литра. Это немного, но за сутки автоматическое устройство накачает свыше полутора тонн воды, количество, достаточное для поливки сада или огорода немалой площади.


ИСТОЧНИК ИЗОБРЕТЕНИЯ - ТЕОРИЯ ГИДРОТАРАНА

Представим себе присоединенную к основанию резервуара с водой закрытую с двух сторон трубу, у которой с одной стороны имеется глухое дно, а с другой (там, где резервуар с водой), установлена сдерживающая воду тонкостенная мембрана. При определенном давлении воды мембрана прорывается, и в трубу из резервуара устремляется поток воды с увеличивающейся скоростью. Если в трубе отсутствует воздух (или каким-либо образом свободно вытесняется водой), то при достижении водяным потоком дна трубы (либо существенного сужения в конце трубы), возникнет тоже явление «гидравлического удара».

Так же как в «гидравлическом таране», при наличии у дна трубы открывающегося при определенном давлении клапана, процесс «гидравлического удара» начнет обеспечивать ту же накачку. «Ударная волна» с зоной повышенного давления пойдет навстречу водяному потоку, растягивая избыточным давлением стенки трубы и обеспечивая этим поступление воды через нагнетательный клапан. Отразившись от находящейся в резервуаре воды, «ударная волна» двинется назад — ко дну трубы. При движении «ударной волны» в сторону нагнетательного клапана, так же как и в «гидравлическом таране», в зоне от входа трубы до фронта «ударной волны» будет наблюдаться понижение статического давления.

Такое движение (с периодическим увеличением и понижением давления) многократно повторится до тех пор, пока столб воды в трубе, не исчерпает свою кинетическую энергию. При этом за определенное время в колпак 4 поступит определенное количество воды. Такой же процесс будет происходить, если вместо мембраны на входе в трубу установить, как это показано на Рис.2 открывающийся клапан 3.


(Рис.2) Принципиальная схема нового водоподъемного устройства

Однако если этот клапан сделать «обратным» (то есть закрывающимся со стороны трубы 7), при соприкосновении с первой «ударной волной», двигающейся
навстречу потоку воды и создающей за собой зону повышенного давления, он получит тенденцию закрыться (от действия разницы давления). При этом начнет перекрывать протекающий через него водяной поток. Наше исследование такой гидродинамической схемы, введение в теорию механизма открытия и закрытия клапанов с учетом их инерционности, показывает, что при определенной конструкция клапана 3 и определенных исходных параметрах, клапан успеет не только закрыться
от первой волны, но останется закрытым, пока действует избыточное давление в трубе 7 под нагнетательным клапаном 5. В итоге, могут создаться условия, когда клапан на некоторое время полностью отсечет водяной поток. При этом отсеченный столб воды в трубе 7, набрав определенную скорость, обязан продолжить свое движение в колпак 4 уже по инерции. Таким образом, сила напора для закачки воды в колпак может быть заменена эквивалентной силой инерции. Однако в отличие от
«гидравлического тарана», каждая порция воды, закаченная в колпак, должна вызывать невосполнимые потери массы всего столба воды (поскольку клапан 3 закрыт). Вследствие этого в трубе 7, со стороны закрытого клапана 3, с момента начала движения первой отраженной от него «ударной волны», должна появиться зона разряжения с давлением близким к нулю. В ней может находиться только некоторая малая часть растворенных в воде газов.
Итак, в результате закачки воды в колпак, разность начальной и конечной кинетической энергии перейдет в потенциальную энергию поступившей в колпак воды (как и в «гидравлическом таране»). При этом избыточное давление в колпаке должно запереть нагнетательный клапан, а почти полное отсутствие давления в трубе 7 при разрушении столба воды (если таковой еще в трубе останется), должно открыть клапан 3, находящийся под статическим напором воды со стороны трубы 2. Через открывающийся клапан 3 в трубу 7 опять начнет поступать вода, объем которой за время поступления в точности будет равняться объему зоны «нулевого» давления или, как принято говорить в гидрогазодинамике, зоны «отрыва». При этом параметры воды в трубе при смешении будут определяться соответствующими законами сохранения энергии и импульса.


ГИДРОРЕАКТИВНЫЙ ДВИЖИТЕЛЬ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ

В результате математического описания этой схемы, учета различных особенностей механизма закачки, всех временных характеристик, механизма изменения давления в колпаке, а также различных потерь, особенностей горизонтальной и вертикальной схемы втекания воды, была разработана достаточно полная теория такой гидродинамической схемы и метод расчета параметров необходимый для проектирования. А в результате конструкторского поиска была найдена и требуемая конструкция клапана 3. Эту гидродинамическую схему можно, разумеется, использовать и в условиях, в которых работает «гидравлический таран». Правда при этом появляется проигрыш по давлению. Однако нет препятствий для работы такого водоподъемного устройства и без питательного бака 1. Для этого достаточно погрузить его в воду, как это показано на Рис.3 на определенную глубину h. В таком исполнении схема превращается в идеальный насос малого напора, который можно использовать только для подъема воды, например, в опреснителях морской воды. Полученные математические зависимости показывают, что при любых начальных параметрах всегда получается, что 2 > H/h > 1. При этом для начальных параметров существуют определенные критерии, определяющие условия автоматического повторения процесса. В частности, одним из необходимых условий является точное соответствие масс клапанов 3 и 5 (нагнетающий) параметрам процесса. Кроме того, должны конструктивно выполняться как расчетный объем в колпаке для воздушной подушки, так и определенная площадь сечения выходного отверстия из колпака (для отвода воды).

Следует отметить, что с энергетической точки зрения, данная схема потребляет больше энергии для работы, чем создаваемая ей полезная энергия. Если представить к.п.д. схемы в виде обычной формулы Ренкина (как отношение потенциальной энергии воды, закаченной в колпак, к потенциальной энергии всей воды, поступившей в трубу 7 до закачки), то к.п.д. получается всегда меньше 100%.


(Рис.3) Схема нового насоса малого напора

    (Рис.4) Схема нового источника энергии

Однако наибольшие перспективы открываются при использовании этой схемы, если отводящая труба вообще отсутствует. Или в том случае, когда на выходе из колпака на глубине hэ?h имеется участок трубы 6 небольшой длины с сечением равным сечению выходного отверстия в колпаке, как это

представлено на Рис.4.

В том и другом случае, как показывают полученные зависимости, при определенном объеме воздушной подушки в колпаке и при определенной площади проходного сечения выходного отверстия, теоретическая зависимость давления (напора) в колпаке от времени будет выглядеть так, как представлено на Рис.5. При этом время подъема давления (tw ) и его спада (tu ) составляет менее 0,1tH. Причем, в течение периода ty < tH происходит открытие

клапана 3, разгон воды и накопление энергии. Давление с погрешностью менее 0,5% за время tH практически постоянно. Таким образом, на выходе из насадки, один раз в течение времени tH должна периодически формироваться струя воды, характеризующаяся расходом воды с определенной скоростью VT.



(Рис.5) Теоретическая зависимость давления от времени

При этом средний расход воды за время tH может значительно превышать значение, получаемое в «гидравлическом таране», а истекающая струя воды, согласно закону сохранения импульса системы, обязана создавать реактивную силу (поскольку клапан 3 закрыт). Таким образом, данная схема превращается в идеальный пульсирующий гидрореактивный движитель. Его эффективность, при отсутствии силы за время ty, как и для любой пульсирующей системы, будет определяться суммарным по времени импульсом силы. Это эквивалентно постоянному действию некоторой (несколько меньшей по величине) средней результирующей реактивной силы RTcp. Кроме того, сама по себе такая струя воды в течение времени tH, способна производить определенную работу. Это позволяет на выходе из колпака установить гидротурбину с последовательно соединенным электрогенератором. В результате, описанная схема превращается в источник электрического тока.

При этом электрогенератор должен находиться в герметическом контейнере, либо на поверхности воды, имея соединение с гидротурбиной посредством какого-либо вращающегося вала. Поскольку сравнительно малый период времени ty будет влиять только на время набора заданной угловой скорости гидротурбины и электрогенератора, то получаемая электрическая мощность определяется только к.п.д. гидроэлектроагрегата.


Энергетические возможности


(Рис.6) Зависимость тяги от глубины


(Рис.7) Зависимость мощности от глубины

Откуда следует, что на глубинах ~450-650 метров имеется определенный максимум. При этом в диапазоне от 15 до 300 метров расчетная величина к.п.д. не превышает 69%.

Как видно, данная схема теоретически может обеспечить любую реактивную тягу и любую электрическую мощность. Для этого достаточно применение ускорительной и нагнетательной трубы определенной длинны и площади входного сечения. Например, при площади входного

сечения равной 3,6 м? на глубине 500 м расчетная средняя тяга составляет ~380 т, а возможная вырабатываемая электрическая мощность ~110 МВт. Однако, как, оказалось, изготовить такую схему, по причине отсутствия требуемой технологии производства (а также материалов с нужными свойствами), возможно только для глубины h > 15 метров.

Для глубины h > 15 метров реактивная сила может быть использована для движения любого типа подводных аппаратов, а ожидаемая электрическая мощность делает возможным создать электростанции любой промышленной мощности в генерирующей энергетике. В последнем случае целесообразно не увеличивать площадь входного сечения труб, а создать базовый

энергетический модуль оптимальной электрической мощности. При этом подводную морскую или бассейновую ГЭС требуемой мощности составлять из пакета таких модулей. Базовый модуль может быть горизонтального, либо вертикального исполнения. Вертикальное расположение модуля упрощает его использование в местах, где нет больших водных ресурсов, так как позволяет обойтись меньшим объемом воды. Однако вертикальный модуль при той же мощности требует несколько большей глубины.

В качестве примера, на Рис.8 приведена компоновочная схема горизонтального модуля, состоящего из нового водоподъемного устройства 1, гидротурбины 2 и генератора 3. На Рис.9 — компоновочная схема вертикального модуля, состоящего из водоподъемного устройства 6, гидротурбины 5, электрогенератора 4.



(Рис.8) Схема горизонтального модуля


(Рис.9) Вертикальный модуль в подземном резервуаре

Вертикальный модуль при этом может быть, например, просто подвешен в подземном резервуаре 1 с водой на тросе 3.Важно, и то, что при определенном режиме работы новое водоподъемное устройство, так же как «гидравлический таран», способно нагревать проходящую через него воду. Расчеты показывают, что, например, вертикально расположенный единичный модуль при отсутствии мер к охлаждению воды может уже через 2 часа работы нагреть всю массу воды в подземном или наземном резервуаре до температуры +75С. Таким образом, данная схема превращается не только в источник электроэнергии, но и одновременно, без какого-либо последующего преобразования электроэнергии, в источник тепла.


Практика — критерий истины

Результаты теоретических расчетов и разработанная методика проектирования устройства подтвердились экспериментальными исследованиями. В 2003 году нами был разработан и изготовлен в Испании экспериментальный малогабаритный полупромышленный энергетический модуль,

состоящий из расчетной схемы горизонтального исполнения, гидротурбины и электрического генератора. Глубина его погружения ~50 метров. Этот модуль имел расчетную выходную электрическую мощность ~97,4 кВт. В качестве основных деталей (колпака, труб 2,7 и т.д.) схемы и приборов контроля давления в колпаке, почти полностью использовался набор элементов конструкции стандартного опреснителя морской воды представленного на Рис.10



(Рис.10) Опреснитель морской воды


(Рис.11) Гидроэлектрогенератор

Объем колпака, размер труб, арматура клапанов были выбраны из условий их совместимости при минимальных затратах на доработку. В качестве гидротурбины применялась реактивная гидротурбина производства голландской компании «Energi Teknikk, A/S» специально модернизированная на входной напор ~33 метра. Гидротурбина и электрогенератор в сборе показаны на Рис.11. В качестве электрогенератора использовался синхронный генератор переменного тока с номинальным напряжением ~6,0 кВ при номинальной мощности ~100 кВт с автоматической регулировкой частоты и напряжения. Для нагрузки применялось балластное омическое сопротивление от мощных ветроэлектрогенераторов. Все детали этого энергетического модуля, а также аппаратура регистрации давления в колпаке, независимый источник питания для нее, гидротурбина и электрогенератор были смонтированы в герметическом контейнере, имеющим в передней части фланцевое соединение для стыковки труб, а в верхней части — люк для выхода отработанной воды. Для доступа к клапанам (для обеспечения их ручной регулировки) в контейнере имелись дополнительные герметические люки. Конструкция этого энергетического блока обеспечивала стыковку ускорительных и нагнетательных труб любой длины и, в случае необходимости, быструю их замену. Внешний вид контейнера с данным энергетическим модулем представлен на Рис.12.



(Рис.12) Контейнер с электрогенерирующим модулем

Результаты испытаний

Испытания проводись путем опускания данного контейнера на тросе с корабля на заданную глубину в Атлантическом океане. Было проведено несколько серий испытаний. В качестве независимых наблюдателей на всех испытаниях присутствовали представители трех авторитетных в Испании компаний. В результате, был получен устойчивый самоподдерживающийся режим, а обработка

осциллограммы избыточного давления в колпаке дала осредненные результаты, представленные на Рис.13.При этом избыточное давление в колпаке оказалось меньше теоретического на ~5,2%, время нагнетания меньше на ~4,3%, а время разгона до восстановления процесса больше на ~5,2%.



(Рис.13) Результаты измерения давления

В то же время прямой замер вырабатываемого электрического напряжения показал значение напряжения 5,8±0,35 кВ, а прямой замер силы тока —15,96±0,46 А. При этом диаграмма получаемого электрического напряжения и силы тока не носила ступенчатый характер. Это соответствовало о

полученной электрической мощности равной 92,73±8,25 кВт, что по среднему значению меньше теоретического значения всего на ~ 4,8%.

Таким образом, новое водоподъемное устройство, представляющее, по сути, новый преобразователь

гравитационной энергии, способно простым способом вырабатывать любое промышленное количество экологически чистой и мощной электроэнергии, и потенциально способно заменить (по мощности) существующие тепловые и атомные электростанции.


ВЫВОДЫ

В настоящее время широкое внедрение этого изобретения в энергетику в техническом плане не представляет проблем. При этом детальная экономическая оценка показывает, что при разработке и создании подобных энергетических модулей и (на их базе)

электростанций мощностью более 100 мВт, наиболее целесообразно использовать схему с вертикальным расположением модуля при единичной выходной мощности ~500

кВт. Такой промышленный модуль под названием «Подводный электропреобразователь гравитационной энергии» уже создан нами в Испании. Его внешний вид в сравнительном масштабе представлен на Рис.14. Пакет таких энергоблоков для электростанции любой мощности потребует резервуар, заполненный водой, площадью не более 5,5 м?/мВт и высотой 21 метр. Схема размещения такого одиночного модуля в подземном резервуаре представлена на Рис.15. Масса энергоблока при использовании электрогенератора «IFC4-Siemens» (Германия) и специально созданной для этих целей реактивной гидротурбины «PHY-500P» (Испания) при выходном напряжении электрического тока равным 6,3 кВ, составляет 6,2 т. Выходное напряжение — 6,3 кВ. Частота — 50 Гц. Длина — 8,1 м. Диаметр опорного основания 2 м.



(Рис.14) Вертикальный модуль 500 кВт


(Рис.15) Вертикальный модуль 500 кВт в подземном резервуаре

Важно, что удельная себестоимость такого источника электроэнергии получается минимальной (из всех известных энергогенераторов).

Общие затраты на строительство электростанции с таким модулем не превысят стоимости строительства промышленного ветрогенератора.В заключение следует отметить, что результаты теоретических и экспериментальных исследований позволили авторам этой статьи и группе специалистов, участвовавших в разработке этого изобретения сделать несколько заявок на Европейские патенты и получить на него в 2005 году Евразийский патент.

Авторы изобретения: Вячеслав МАРУХИН, Валентин КУТЬЕНКОВ


В.М.Овсепян. Гидравлический таран и таранные установки. Теория, расчёт и конструкции

Ростовцев В.Н. Утилизация малых падений воды

Форум на тему гидротарана

Гидротаран поднимает воду на высоту нескольких десятков метров.

Гидротаран  – гидравлический таран.

 

 

Гидротаран (гидравлический таран) – это несложный и остроумный механизм, который, не нуждаясь в источнике энергии и не имея двигателя, поднимает воду на высоту нескольких десятков метров.

 

Описание гидротарана

Принцип действия гидротарана

Конструкция гидротарана “Качалыч”

Преимущества гидротарана

Применение гидротарана

Технические характеристики гидротаранов “Качалыч”

 

Описание гидротарана:

Гидротаран (гидравлический таран) – это несложный и остроумный механизм, который, не нуждаясь в источнике энергии и не имея двигателя, поднимает воду на высоту нескольких десятков метров.

Гидротаран

Он может месяцами непрерывно работать без присмотра, регулировки и обслуживания, снабжая водой небольшой экопосёлок, родовое поселение, общину или ферму.

В основе работы гидравлического тарана лежит так называемый гидравлический удар — резкое повышение давления в трубопроводе.

 

Принцип действия гидротарана:

Ниже на рисунке изображена принципиальная схема гидротарана.

Гидротаран

  • 1. Питающая труба
  • 2. Отбойный клапан
  • 3. Напорный клапан
  • 4. Воздушный колпак
  • 5. Напорный трубопровод
  • 6. Устройство забора воды

Питающая труба (1) имеет относительно большую длину. Высота уровня воды в месте её забора и в месте установки отбойного клапана должна быть не менее 0,5 м (от перепада напрямую зависит производительность и высота напора).

Гидравлический таран работает следующим образом. При открытом отбойном клапане (2) вода, двигаясь по питающей трубе (1), сливается наружу. При достижении определенной скорости потока, вода подхватывает отбойный клапан (2) и ускоренно перемещает его верх. Клапан (2) резко перекрывает поток воды. Передние слои воды, упираясь в клапан (2), останавливаются, в то время как остальные слои столба воды в питающей трубе (1) по инерции продолжают движение. Вследствие этого, происходит резкое повышение давления в зоне отбойного клапана (2), и весь столб воды в трубе (1) останавливается. Процесс повышения давления в трубе (1) сопровождается упругим сжатием воды. После остановки воды в трубе (1) возникает обратная, отраженная волна давления в сторону устройства забора воды (6), приводящая к понижению давления у отбойного клапана (2), вплоть до разряжения. Отбойный клапан (2) открывается, и процесс повторяется снова. В моменты повышения давления в области отбойного клапана (2) вода через напорный клапан (3) поступает в полость воздушного колпака (4) или, иначе, пневмогидроаккумулятора. Далее вода, практически без пульсации, по напорному трубопроводу (5) поступает к месту назначения.

Описанное явление, когда разогнанный массивный столб воды в длинной питающей трубе (1) ударяет по внезапно закрытому отбойному клапану (2), называют гидравлическим ударом.

 

Конструкция гидротарана “Качалыч”:

Гидротаран

  • 1. Питающая труба
  • 2. Корпуса отбойного и напорного клапанов
  • 3. Воздушный колпак
  • 4. Напорный клапан
  • 5. Клапанный узел
  • 6. Скоба крепления
  • 7. Отбойный клапан

 

Преимущества гидротарана:

– длительный срок службы,

лёгок в использовании и неприхотлив в обслуживании,

– работает без топлива, электричества, газа и ручной силы, экономит финансы в колоссальных объёмах,

может обеспечивать хозяйство до одного миллиона литров воды в год.

 

Применение гидротарана:

Гидротараны устанавливаются на реки, ручьи, водопады и ключи, а также на любые скопления воды, где есть возможность установить запруду с перепадом высоты  от 0,5 метров.

Самодействующие насосы-гидравлические тараны не предназачены для колодцев, скважин и озёр!

 

Технические характеристики гидротаранов “Качалыч”:

ПАРАМЕТРЫ / МОДЕЛЬ “Качалыч” ГТ-01-40/½″ “Качалыч” ГТ-03-32/½»
Рабочий перепад высот (м) 1 — 8 0,5 — 3
Рекомендуемый перепад высот (м) 1,5 — 5 0,5 — 1,5
Производительность, подъём воды (напор) на высоту 15м, перепад 1,5м (л/сутки) 2000 1200
Максимальный напор (при нулевой производительности), перепад 1,5м (м) 40 25
Диаметр напорной трубы ПНД SDR 11 (мм) 40 32
Гарантированный срок эксплуатации 2 года 2 года
Срок службы (при рекомендуемом обслуживании) до 20 лет до 10 лет
Особенности — Большая прочность и долговечность — Малая цена при оптимальной производительности
— Работа в большом диапазоне перепадов высот — Хорошая работа при малом перепаде высот

 

Примечание: описание технологии на примере гидротарана “Качалыч”.

 

ГидротаранГидротаранГидротаранГидротаран

карта сайта

гидротаран своими руками
гидротаран купить
гидротаран замкнутого цикла
гидротаран своими руками замкнутого цикла
гидротаран в стоячей воде
гидротаран видео
гидротаран чертеж
гидротаран колодце
гидравлический таран своими руками
устройство гидротарана
чистопольский с д книга гидравлические тараны
гидротаран своими руками чертежи
гидротаран марухина кутьенкова
гидротараны своими руками видео
гидротараны расчет
насос гидротаран своими руками
гидротаран генератор
гидротаран своими руками замкнутого цикла видео
гидравлические тараны большой производительности кобылянский
гидротаран без сброса
гидравлический таран купить
гидротаран сегодня марухина чертежи 2016 год
гидротаран купить украина
гидротаран производительность
купить подводный гидротаран
гидротаран мухина прототип
комплекс гидротаран
гидротаран в колодце с водой видео
гидротаран его характеристики
устройство клапанов гидротарана
явление гидротарана
что такое гидравлический таран видео

 

Коэффициент востребованности 12 411

Гидроудар или как сделать бесплатный насос, используя энергию воды

В этой статье мы расскажем о том, как создать насос, не требующий топлива или электричества для работы.

Статья содержит описание принципа работы устройства, основные элементы конструкции, а также видео с процессом сборки базовой модели таранного насоса. Вы узнаете, как собрать его самостоятельно.

Гидравлика — наука такая же древняя, как и сама вода. Законы гидравлики действуют абсолютно для любой жидкости, и мы рассмотрим, как использовать эти законы в организации насоса или помпы с применением кинетической энергии.

Прототип насоса, основанного на действии гидроудара, был создан во Франции ещё в 17-ом веке изобретателем воздушного шара Монгольфье. Практически одновременно с ним идентичную конструкцию запатентовали изобретатели в Англии, США и Германии. В России он получил звучное народное название «гидротаран».

Конструкция гидротарана

Привычные помпы состоят из нагнетающего устройства (закрытая крыльчатка, поршень, мембрана), активатора (ДВС, электромотор, иной привод), трубопровода и системы клапанов. Схема гидротаранного насоса предельно проста, его уникальность заключается в том, что активатором и поршнем выступает сам агент (вода). Его конструкция примечательна тем, что в ней нет механических подвижных частей (кроме двух примитивных клапанов), не используются ГСМ и участки под постоянным давлением.

Основа насоса — сплошная трубка с тремя отводами, которую можно собрать из обычных фитингов и трубы, имеющихся в любом магазине сантехники.

Первый отвод. К нему подключается питающая труба (фидер), о ней расскажем отдельно.

Второй отвод. Через ниппели и муфты к нему подключается обратный клапан, расширительный бак с мягкими стенками и выходной патрубок. В качестве расширительного бачка вполне пригодна пластиковая бутылка, на заводских моделях устанавливают полноценные баки в металлическом корпусе с резиновой мембраной.

Третий отвод. Здесь должен быть установлен главный элемент — проточный гидроклапан. Это элемент запорной арматуры, который перекрывает поток воды при критическом увеличении давления. Его работа регулируется пружиной. Такие клапаны до 1,5" можно пробрести в магазине, но при большем диаметре их стоимость может быть довольно велика (20 у. е. и выше). Если стоит задача создать насос для реальных хозяйственных нужд под большой объём воды, лучше изготовить этот клапан самостоятельно.

Сборка насоса с самодельным клапаном — пошаговое видео

Как и почему работает гидротаран

Главная особенность данного насоса — он использует кинетическую энергию воды, которая уже находится в потоке. То есть, для подачи воды на высоту необходим перепад уровней. Он может быть минимальным — 0,5 м, но чем этот показатель больше, тем эффективнее работа насоса. Мы нарочно не приводим гидравлический расчёт — он крайне сложен и сводится лишь к оптимальной пропорции перепада высоты между точкой забора воды, рабочей частью насоса и верхней точкой слива. Поскольку это устройство будет установлено в конкретных условиях, все величины разумно определить по месту.

Вода, попадая в фидер, под действием гравитации стремится к нижней точке, создавая избыточное давление, на которое реагирует гидроклапан. В момент его срабатывания вода блокируется в закрытой системе и происходит явление гидроудара, который проталкивает воду через обратный клапан в расширительный бак. Эластичные стенки бака накапливают избыточное давление от гидроудара, но не в воде (она несжимаема), а в воздухе. Это давление и проталкивает воду по отводному каналу (шлангу, трубе), а обратный клапан не даёт давлению выровняться.

Принцип работы гидротаранного насоса на видео

После сброса давления в расширительный бак гидроклапан снова открывается и цикл возобновляется. Подача воды происходит импульсами. Многие уже догадались, что работа насоса становится возможна за счёт разности плотности сред — несжимаемой воды и воздуха, который легко аккумулирует давление. Вся сила гидроудара переходит в спрессовку газа (воздуха) в расширительном баке, который потом подаёт воду наверх.

Фидер и гидроклапан

Эти два элемента — основные в конструкции, которую планируется создать своими руками. От их размеров и устройства зависит вся работа агрегата.

Фидер

Представляет собой закрытый канал, соединяющий точку водозабора и точку гидроудара. В идеале это длинная ровная труба, расположенная под уклоном. Вода, находящаяся в трубе, и есть тот самый поршень, который создаёт избыточное давление — причину гидроудара. Поэтому чем больше сечение, тем мощнее будет таран. Диаметр трубы фидера должен лежать в разумных пределах — от 50 до 150 мм. Эта величина должна соотноситься с диаметром остальных каналов системы и требуемой высотой подачи.

В заборной части фидера рекомендуем установить раструб для лучшего улавливания воды.

Оптимальные соотношения диаметров гидротаранного насоса

Фидер, мм Система, мм
50 16
100 32
150 32–50

В последнем случае при длине фидера 10 м и перепаде в 1,5 м вода будет подаваться на высоту в 10 м со скоростью около 1500 л/час.

Гидроклапан

Заводская модель этого устройства может оказаться дорога за счёт материала, прокладок и пружины, выставленной на определённое давление. В нашем случае, когда мы используем бесплатную энергию, которую просто нет смысла экономить или учитывать, достаточно самого факта блокировки потока воды. Для этого вполне подойдёт гидроклапан собственного изготовления.

Насос с самодельным гидроклапаном — видео установки с комментариями

Идеальное место установки такого насоса — пороги реки с их значительными перепадами или ручьи.

Гидротаранные насосы заводского изготовления

Разумеется, такие простые и надёжные устройства не могли миновать претензий на серийное производство. В настоящий момент их производят как отечественные, так и зарубежные фирмы. Однако из-за своей специфики работы (часть воды сбрасывается через клапан) они имеют довольно узкую область применения — в городском хозяйстве они практически бесполезны, зато незаменимы в отдалённых, неосвоенных районах, экопоселениях и фермерских хозяйствах.

На сегодняшний день в России только одна фирма выпускает эти экологически чистые и эффективные устройства — производственная артель «Урал». Модельный ряд представлен насосами «Качалыч» ГТ-01 (190 у. е.) и ГТ-03 (110 у. е.), а также их разновидностями.

Изготовление насоса своими руками обойдётся несколько дешевле, даже если приобретать все детали. Однако реальная экономия достигается при наличии подручных средств — в этом случае насос будет практически бесплатным, при этом его производительность может быть существенно выше за счёт более объёмного фидера и пропускной способности всей системы.

Любой прибор или устройство на основе действий естественных сил заслуживает пристального внимания и разработки. Игнорируя бесплатную энергию, данную самой природой, мы рискуем внезапно остаться беспомощными в отсутствие бензина и электричества. Перевод подсобного хозяйства на альтернативные источники энергии — залог спокойствия и гармонии с окружающей средой.

Виталий Долбинов, рмнт.ру

Насос без затрат энергии (гидравлический таран) - Самоделкино

В журнале "Наука и жизнь" прочитал про насос-гидротаран. Поскольку применить такой насос было негде (у меня на даче уже был водопровод), а попробовать очень хотелось (ну как же это так - без всякого подвода энергии и работает?!) статья запомнилась. Году в 2004 друг получил участок на обрывистом берегу реки. Жаловался: "Воды хоть залейся, но как её таскать?" Предложил. Год строили (не всё сразу получалось). Построили, настроили - до сих пор работает без внешних источников энергии, без ремонта (прокладки друг менял)

Фото по зимнему времени не приведу. Тонкости конструкции - тоже (давно было). Кто дерзнет попробовать - получит то же бешеное наслаждение, как мы с Володей, когда легли спать под бочкой, и на рассвете нас окатило водой...

 

С.ЛАТЫШЕВ.

Гидравлический таран

«Наука и жизнь», 1997, № 5, стр. 69 – 70

 

 Несложный и остроумный механизм — гидравлический таран, не нуждаясь в источнике энергии и не имея двигате­ля, поднимает воду на высотунескольких десятков метров Он может месяцами непрерывно работать без присмотра, регулировки и обслуживания, снабжая водой небольшой посёлок или ферму В основе работы гидротарана лежит так называемый гидравлический удар — резкое повышение давления в трубопроводе, когда поток воды мгновенно перекрывается заслонкой Всплескдавления может разорвать стенки трубы, и, чтобы избежать этого, краны и вентили перекрывают поток постепенно.

Гидравлический таран работает следующим образом (рис. 1)

Из водоёма 1 вода по трубе 2 поступает внутрь устройства и вытекает через отбойный клапан 3. Скорость потока нарастает, его напор увеличивается и достигает величины, превышающей вес клапана. Клапан мгновенно перекрывает поток, и давление в трубопроводе резко повышается — возникает гидравлический удар Возросшее давление открывает напорный клапан 4, через который вода поступает в напорный колпак 5, сжимая в нем воздух. Дав­ление в трубопроводе падает, напорный клапан закрывается, а отбойный — открывается, и цикл повторяется снова. Сжатый в колпаке воздух гонит воду по трубе 6 в верхний резервуар 7 на высоту до 10 —15 метров.

Первый гидравлический таран построили в городе Сен- Клу под Парижем братья Жозеф и Этьен Монгольфье в 1796 году, через 13 лет после своего знаменитого воздушного шара. Теорию гидравлического тарана создал в 1908 году Николай Егорович Жуковский Его работы позволили усовершенствовать конструкцию это­го устройства и повысить его кпд

Гидравлический таран настолько прост, что его можно без труда изготовить самостоятельно, почти полностью собрав из готовых деталей, применяемых в водопроводных сетях. Недостающие детали требуют несложных токарных и сварочных работ

Основным элементом устройства (рис. 2)

служит стальной или чугунный тройник 1 (а ещё лучше — крестовое соединение, тогда четвёртое, нижнее, отверстие закрывают резьбовой заглушкой) с внут­ренней резьбой 11/2—2 дюйма. В тройник ввинчивают переходные ниппеля («бочонки») 2 с длинной наружной резьбой—сгонами. К одному сгону подсоединяют подводящий трубопровод диаметром не менее 50 мм и длиной не более 20 метров. Ко второму — подсоединяют колено (уголок) 3 так, чтобы при установке тарана его свободный торец был горизонтальным: на нем будет смонтирован отбойный клапан. На третьем ниппеле монтируют напорный колпак с клапаном. Все резьбовые соединения перед сборкой очищают металлической щёткой от грязи и ржавчины и обматывают паклей.

Напорный колпак 4 делают из отрезка металлической или пластмассовой трубы диаметром 15—20 сантиметров. Его объем должен быть примерно равен объёму подводящего трубопровода. Торцы трубы закрывают крышкой 5 и переходным фланцем 6 с резиновыми прокладками 7 и 7а (кольцо). Колпак стягивают стальными шпильками 8.

Напорным клапаном может служить обратный клапан, выпускаемый для водяных насосов итальянской фирмой «Бугатти» (с внешней резьбой 1 дюйма) и немецкой фирмой «Ценнер» (диаметром от 15 до 40 мм) — они продаются в магазинах сантехнического оборудования, самодель­ный клапан-лепесток из куска листовой резины или сливной клапан от туалетного бачка. Конструкция клапана опреде­лит размеры и форму переходного фланца, место и спо­соб крепления напорной трубы 9 диаметром 1/2 дюйма. Варианты конструкции показа­ны на рисунке

Отбойный клапан собран из двух деталей: корпуса 10а и заслонки 106. Корпус вытачи­вают из стали или из бронзы. В верхней его части просверлено отверстие диаметром 15 — 20 мм. Внутренняя полость заканчивается конусом с углом порядка 45°. Корпус клапана навинчивается на сгон ниппеля 2 Стальная или бронзовая заслонка имеет форму двойного усечённого конуса диаметром 20—25 мм и массой 100—150 г. Верхний конус заслонки должен иметь тот же угол, что и полость корпуса: только тогда клапан смо­жет мгновенно перекрыть поток, создав гидравлический удар. В верхнюю часть заслонки ввёрнуты три центрирующие спицы так, чтобы они входили плотно, но без трения в верхнее отверстие корпуса. В нижнюю — ввернут винт. Настраивают гидравлический таран, меняя массу заслонки.

Для этого на нижний винт надевают свинцовые шайбы. Для запуска гидротарана достаточно приподнять заслонку, давая воде свободно вытекать через отбойный клапан.

Впускное отверстие подводящего трубопровода необходимо оборудовать простым фильтром, защищающим гидротаран от грязи, и заслонкой, перекрывающей воду на зиму. Чтобы слить воду из корпуса тарана и колпака, через нижнее отверстие вводят спицу, открывая ею напорный клапан. Гидравлический таран можно установить стационар­но или сделать съёмным, предусмотрев отводной канал для воды, текущей из отбойного клапана.

Производительность гидравлического тарана можно ориентировочно оценить по таблице. Она связывает отношение массы воды (т), поднятой гидротараном, к массе воды (М), поступившей из водоёма, и отношение высоты подъёма воды hк высоте Н её падения к гидротарану.

т/М

0,3

0,2

0,15

0,1

0,06

0,05

0,03

0,02

0.01

h/H

2

3

4

6

8

10

12

15

18

Пусть, например, к гидравлическому тарану поступает М = 12 л/мин воды с высоты Н = 1,5 метра Посмотрим, сколько воды он сможет поднять на высоту 9 метров. Отношению h/H= 9/1,5 = 6 в таблице соот­ветствует величина т/М = 0,1. Это значит, что гидротаран ежеминутно должен подавать на высоту 9 метров массу воды т = 0,1-М = 0,1-12 = 1,2 литра. Это немного, но за сутки авто­матическое устройство накача­ет свыше полутора тонн воды, количество, достаточное для поливки сада или огорода не­малой площади.

ЛИТЕРАТУРА

Овсенян В. М. Гидравлические тараны и таранные установки. М., 1968.

Сделайте сами в квартире и на даче. М., Стройиздат, 1982.

 

 

Гидротаран / Мастерская / НеПропаду

Статья будет интересна прежде всего тем у кого есть загородное жильё или такое планируется. Тепло ни как не хочет приходить, сегодня немного оттеплило, ночью -16, днем 0, но очень охота испробовать и потому и решились испытать гидротаран.
для тех кто не в теме: гидротаран устройство — (насос) для подъёма воды на уровень значительно выше чем водоём. Работает без электричества и без прилагаемых физических усилий. за счёт энергии воды. Денисденисыч популярно описал ранее тут более подробную информацию по расчётам можно посмотреть здесь
Начальное представление о гидротаране у меня было как о чём то сложном, но теперь могу сказать что это наиболее простой водяной насос, который может собрать практически любой человек. На сборку нашего гидротарана ушло чуть меньше часа, но это первый, на остальные уйдёт ещё меньше времени.
Для сборки нам понадобилось — труба ПП 40ǿ- 50 см, уголок 90°- 1 шт, обратный клапан ПП – 2шт, тройник ПП 40х40х40 – 1 шт. муфта соединительная на 32 мм (1.1/2)- 1шт., муфта соединительная 40мм, муфта соединительная 20мм (3/4)-1 шт., обратный клапан 20мм (3/4)- 1 шт, все запчасти из ПП имеют диаметр 40 мм., (это была ошибка, надо было всё брать на 50мм) использованный огнетушитель -ОП8 – 1 шт, тройник 40х20х40 — 1 шт., труба ПВХ канализационная 50ǿ — 21метр. Зашли в магазин, купили всё по списку и через час гидротаран у вас готов. На фото наглядно видно, куда какую запчасть приладить. Из отбойного клапана удаляем пружину и ставим его «верх ногами», на самом клапане уже есть замечательная дырочка диаметром 6мм под шпильку на которую в последствии навешиваем груз. Ошибка в выборе диаметра трубы в том что полипропилен (ПП) считается по внешниму диаметру, а мет. труба по внутреннему, в связи с чем рабочая труба в действительности у нас составила 30мм, что значительно сказалось на производительности, следующий гидротаран решено сделать из мет. трубы диаметром 50мм.

общий вид

отбойный клапан

подсоединение огнетушителя

обратный клапан нагнетаемой воды
Теперь по пуску. Сразу, у нас не запустилось, пришлось неоднократно стучать по отбивному клапану, пока вся система не пришла в какой то внутренний баланс, потом всё заработало и проработало часа четыре, подсоединили шланг и поднимали воду приблизительно на 8-9 метров, струя воды на верху чуть меньше чем внизу но незначительно, ведро воды набиралось за 4 минуты (150л/ч,3600 л/сут) что обеспечит суточную потребность в воде 3-4 домов, при более стабильной работе давление было 2 атм. что нас вполне устраивало и это на маленьком гидротаране. На ночь я всё разобрал боясь что вода в насосе замёрзнет. В результате эксперимента накачали две бочки воды, и мысленно поставили себе «зачтено».
ну и видео (не удается вставить, может кто научит, но вот ссылкасмотреть тут
и ещё одна
ещё одна

не стал публиковать новый пост, разместил всё вместе.
вот представляю законченную работу по гидротарану, смонтировал полностью систему, производительность 1 куб за 4 часа, что позволяет снабжать водой 4 участка, с накопительными баками на двух участках по 3 куба, на моем маленький басейе на 15 кубов. труднее всего было приуить соседей не сразу пользоваться, а дождаться когда все ёмкости наполнятся, ведь реально больше куба в сутки ни кто не использует. если у кого возникнут вопросы с удовольствием отвечу

Гидротаранный насос — Википедия

Гидротаранный насос, приводящий в действие фонтан в Центре альтернативных технологий (Уэльс)

Гидротаранный насос или гидравлический таран (фр. bélier hydraulique, англ. hydraulic ram) — механическое устройство для подъёма воды выше своего уровня (сверхъединица). Энергию для работы насос получает из потока воды, перетекающего под действием силы тяжести из т. н. «питающего» резервуара (например, из запруды на реке) по «питающей» трубе в какой-либо нижерасположенный сток (например, в ту же реку ниже по течению), благодаря чему устройство можно применять в местности, где нет электроснабжения или других источников энергии.

Пропуская через себя бо́льшую часть воды с небольшой высоты h (разница высот между стоком и уровнем воды в питающем резервуаре) насос поднимает меньшую часть воды на бо́льшую высоту H (разница высот между верхней точкой отводящей трубы и уровнем воды в питающем резервуаре).

Термины не являются устоявшимися. Например, питающая труба нередко именуется «напорной» и т. п.

Схема гидротаранного насоса

Гидротаранный насос в простейшем случае состоит из (см. рисунок):

  • питающей трубы (а)
  • отбойного клапана (б)
  • возвратного клапана (в)
  • воздушного колпака (г)
  • отводящей трубы (д)

Начальное состояние: отбойный клапан Б открыт и удерживается в таком положении пружиной или грузом или т. п. Сила этой пружины превышает силу давления статического столба воды в питающей трубе на закрытый отбойный клапан. Возвратный клапан В закрыт. Воздушный колпак заполнен воздухом.

По питающей трубе А поступает вода, разгоняясь до некой скорости, при которой отбойный клапан Б, увлекаемый потоком воды, преодолевает усилие своей пружины и закрывается, перекрыв сток. Инерция резко остановленой в питающей трубе воды создает гидроудар — резкий скачок давления, величина которого определяется длиной питающей трубы и скоростью потока. Давление гидроудара преодолевает давление столба воды в отводящей трубе Д, возвратный клапан В открывается и часть воды из питающей трубы А проходит через него и поступает в отводящую трубу но, главным образом, в воздушный колпак Г, поскольку инерция массы воды в отводящей трубе Д препятствует такому быстрому, импульсному поступлению. Вода в питающей трубе остановлена, давление падает и приходит к статической величине, возвратный клапан закрывается, отбойный клапан открывается. Вода в питающей трубе начинает двигаться, постепенно ускоряясь, а в это время под давлением воздуха, поджатого в воздушном колпаке, поступившая в него порция воды продавливается в отводящую трубу. Таким образом система возвращается в исходное состояние и начинает новый цикл работы.

Этот механизм действует при помощи запаса механической работы, содержащегося в воде, текущей по трубе. В оригинальном приборе Монгольфье, устроенном в Сен-Клу, близ Парижа, вода притекает по длинной трубе AB{\displaystyle AB} (рис. 1) из невысоко расположенного пруда и может свободно вытекать через край K{\displaystyle K}, пока клапан V{\displaystyle V} опущен.

V Рис. 1. Гидравлический таран Монгольфье

С того момента, как вода, наполняющая AB{\displaystyle AB}, получила возможность течь, работа силы тяжести пойдет на увеличение её скорости до некоторой наибольшей величины, обусловленной высотой h{\displaystyle h} уровня воды в пруде над отверстием K{\displaystyle K}, размерами и свойством (см. ниже) трубы AB{\displaystyle AB}. Вместе с тем будет возрастать и гидравлическое давление воды на нижнюю поверхность клапана V{\displaystyle V}, вес которого так подобран, чтобы он поднялся и закрыл выходное отверстие, как только скорость воды в трубе достигнет своей наибольшей величины. В этот момент гидростатическое давление воды на внутреннюю поверхность трубы AB{\displaystyle AB} и её продолжения CS{\displaystyle CS} станет возрастать, так как движение воды будет замедляться, пока весь запас работы, заключенный в её массе в виде живой силы, не истратится на растяжение этих стенок, на сжатие самой воды и на внутреннее трение. Но часть этих стенок сделана подвижною: в колоколообразном придатке S{\displaystyle S} замкнуто водой некоторое количество воздуха и помещены клапаны W{\displaystyle W}, открывающиеся в колокол R{\displaystyle R}, тоже содержащий воздух над водой и снабженный подъемной трубой DE{\displaystyle DE}. Поэтому после закрытия клапана V{\displaystyle V} живая сила воды начинает сжимать воздух в S{\displaystyle S}, пока не поднимутся клапаны W{\displaystyle W}; тогда вода станет входить в R{\displaystyle R}, частью сжимать находящийся в нём воздух, а частью подниматься по трубе DE{\displaystyle DE} на высоту H{\displaystyle H}. На все это скоро истратится вся живая сила воды, давление в R{\displaystyle R} перевесит давление в S{\displaystyle S}, клапаны W{\displaystyle W} закроются, V{\displaystyle V} откроется, и весь процесс начнется снова. Возрастание давления будет тем больше, чем быстрее захлопывается клапан V{\displaystyle V} и чем неподатливее стенки сосуда, заключающего воду в движении. Такого «гидравлического удара» тщательно стараются избегать при устройстве водопроводов, чтобы не лопались трубы, поэтому Монгольфье и устроил колпак S{\displaystyle S}; упругая податливость воздуха, в нём заключенного, ослабляет силу удара; воздух же в колпаке R{\displaystyle R} служит регулятором для трубы DE{\displaystyle DE} и поддерживает в ней движение воды в тот период, когда клапаны W закрыты. При повышенном давлении в воде растворяется больше воздуха, чем при атмосферном давлении, поэтому количество воздуха в S{\displaystyle S} и R{\displaystyle R} уменьшалось бы во время непрерывной работы. Чтобы пополнять эту убыль, служит клапан H{\displaystyle H}, отворяющийся внутрь: как только клапаны W{\displaystyle W} захлопнутся, упругость воздуха в S{\displaystyle S} заставит воду в CBA{\displaystyle CBA} отхлынуть назад; с приобретенною скоростью она перейдет своё положение равновесия и произведет на очень короткое время под S{\displaystyle S} давление, меньшее атмосферного. В этот момент через H{\displaystyle H} входит немного воздуха.

В продаже существуют готовые типы таран, английские фирмы Дулас, французские Декер и др. При испытании в Парижской консерватории искусств и ремёсел таран, устроенные Декером (Decoeur), дали полезное действие от 0,6 до 0,9. На рисунке 2 видны особенности его устройства: оба клапана расположены один над другим и снабжены пружинами и винтами, чтобы регулировать их натяжение во время самой работы, изменяя число ударов от 40 при падении в 0,3 м до 220 при падении в 2 м; высота подъёма во всех опытах была 9м 15 см.

H Рис. 2. Гидравлический таран Декера

При впускании воздуха через боковой клапан, не изображённый на рис. 2, таран работает без шума, но полезное действие и наибольшая возможная высота подъёма уменьшаются. Хорошие результаты действия Таранa настолько зависят от своевременного закрывания выпускного («стопорного») клапана, что для больших машин Персалль (Pearsall) нашёл выгодным устроить для этой цели особую машину, приводимую в движение сжатым воздухом из-под колпака. Такой тип Таранa действует совершенно плавно, дает большой коэффициент полезного действия и может быть устроен в больших размерах. На том же принципе, Персалль устраивает гидравлический Таран для получения струи сжатого воздуха.

Расчёт коэффициента полезного действия гидравлического таранa очень прост, если ограничиться главными обстоятельствами явления. Пусть из пруда вытекает в единицу времени V1{\displaystyle V_{1}} единиц объёма воды и падает с малой высоты h{\displaystyle h}. А поднимаются в резервуар водопровода V2{\displaystyle V_{2}} единиц на большую высоту H{\displaystyle H}. Обозначим η{\displaystyle \eta } коэффициент полезного действия машины. Он равен отношению работы, совершённой машиной к работе падающей воды:

η=V2HV1h{\displaystyle \eta ={\frac {V_{2}H}{V_{1}h}}}

Для определения η{\displaystyle \eta } в разных случаях было сделано много опытов ещё в 1805 г. Эйтельвейном, позднее Мореном и др. Выяснилось, что коэффициент этот тем больше, чем ближе к единице отношение H:h{\displaystyle H:h}. По Эйтельвейну, когда H{\displaystyle H} в 20 раз больше h{\displaystyle h}, η=0,2{\displaystyle \eta =0,2}; при H=8h{\displaystyle H=8h} η=0,5{\displaystyle \eta =0,5}; при H=3h{\displaystyle H=3h} η=0,7{\displaystyle \eta =0,7}. По данным начала XX века, полезное действие больше при больших падениях, чем при малых; так, при малых h{\displaystyle h} η=0,4{\displaystyle \eta =0,4}, при средних 0,55, а при больших 0,7. Влияние же отношения высоты падения к высоте подъёма воды признается малым. Поэтому из V1=20{\displaystyle V_{1}=20}(литров) можно рассчитывать, например, поднять 2 л на 7 метров, 1 л на 14 метр, и только пол-литра на 28 м, если при данном H{\displaystyle H} η{\displaystyle \eta } = 0,1 для взятого тарана, труба, приводящая воду, должна быть достаточной длины, чтобы масса заключающейся в ней воды была значительна: по Эйтельвейну, она должна превышать H{\displaystyle H} на число футов, равное отношению H{\displaystyle H} к h{\displaystyle h}, и во всяком случае быть не короче, чем пятикратная высота подъёма, так что при коротких расстояниях её приходится намеренно изгибать. Диаметр клапана б должен быть равен диаметру приводной трубы, а этот последний в футах равен 260(V1+V2){\displaystyle 2{\sqrt {60(V_{1}+V_{2})}}}, где V1{\displaystyle V_{1}} и V2{\displaystyle V_{2}} даны в кубических футах. Объём колпака г делают равным объёму приводной трубы. Оба клапана должны быть как можно ближе один к другому. В настоящее время гидравлический таран употребляется довольно часто для поднятия небольшого количества воды для хозяйственных целей.

Изменение давления определяется по формуле Жуковского: Δp=ρ(v0−v1)v{\displaystyle \Delta p=\rho (v_{0}-v_{1})v},

где ρ — плотность жидкости, v0{\displaystyle v_{0}} и v1{\displaystyle v_{1}} — средние скорости воды до и после закрытия клапана, v — скорость распространения ударной волны в жидкости. Эту скорость можно рассчитать по формуле:

v=1ρβ+DρEd,{\displaystyle v={\frac {1}{\sqrt {\rho \beta +{\frac {D\rho }{Ed}}}}},},

где E — модуль упругости стены, β{\displaystyle \beta } — сжимаемость жидкости, d — толщина стен трубы, а D — её диаметр.

Коэффициенты упругости различных материалов:

  • вода — 2⋅109 Н/м²;
  • чугун — 100⋅109 Н/м²;
  • сталь — 200⋅109 Н/м²;
  • медь — 123⋅109 Н/м²;
  • алюминий — 71⋅109 Н/м²;
  • полистирол — 3,2⋅109 Н/м²;
  • стекло — 70⋅109 Н/м²;

Предел значения V равен 1414 м/с (скорость звука в воде).

КПД гидротаранного насоса зависит от отношения H/h, где h — высота попадающей в резервуар А воды, а H — требуемая высота поднятия.

В 1772 году англичанин Джон Уайтхёрст изобрёл и построил «пульсирующий двигатель», прообраз гидравлического тарана, и спустя три года опубликовал его описание. Устройство Уайтхёрста управлялось вручную. Первый автоматический гидротаранный насос изобрёл знаменитый француз Жозеф-Мишель Монгольфье совместно с Ами Арганом (A. Argand) в 1796 году. В 1797 году при помощи своего друга Мэтью Боултона Монгольфье получил британский патент на своё изобретение. В 1816 году сыновья Монгольфье запатентовали доработанную версию этого насоса.

В США гидротаранный насос впервые запатентовали Серно (J. Cerneau) и Халлет (S.S. Hallet) в 1809 году. В 1834 году американец Строубридж (H. Strawbridge) начал производство гидротаранных насосов.

В 1930 году профессор С. Д. Чистопольский в работе «Гидравлический таран» опубликовал метод теоретического расчёта таких устройств, основанный на теории гидравлического удара, созданной профессором Н. Е. Жуковским в 1897—1898 годах.

Водяной насос без питания своими руками – Sam-Sdelay.RU – Сделай сам!

Водяной насос без питания своими руками или как сдлеать гидротаранный насос

 

 

Гидротаранный насос или гидравлический таран — механическое устройство для подъёма воды на значительную (до нескольких десятков метров) высоту.

Энергию для работы насос получает из потока воды, перетекающего под действием силы тяжести из т. н. «питающего» резервуара (например, из запруды на реке) по «питающей» трубе в какой-либо нижерасположенный сток (например, в ту же реку ниже по течению), благодаря чему устройство можно применять в местности, где нет электроснабжения или других источников энергии.

 

 

 

 

Из истории:

В 1772 году англичанин Джон Уайтхёрст изобрёл и построил «пульсирующий двигатель», прообраз гидравлического тарана, и спустя три года опубликовал его описание. Устройство Уайтхёрста управлялось вручную. Первый автоматический гидротаранный насос изобрёл знаменитый француз Жозеф-Мишель Монгольфье совместно с Ами Арганом (A. Argand) в 1796 году. В 1797 году при помощи своего друга Мэтью Боултона Монгольфье получил британский патент на своё изобретение. В 1816 году сыновья Монгольфье запатентовали доработанную версию этого насоса.

В США гидротаранный насос впервые запатентовали Серно (J. Cerneau) и Халлет (S.S. Hallet) в 1809 году. В 1834 году американец Строубридж (H. Strawbridge) начал производство гидротараных насосов.

В 1930 году профессор С. Д. Чистопольский в работе «Гидравлический таран» опубликовал метод теоретического расчёта таких устройств, основанный на теории гидравлического удара, созданной профессором Н. Е. Жуковским в 1897—1898 годах.

 

Этапы работы гидротаранного насоса:

 

 

 

 

 

Видео о гидротаранном насосе.

 

 

Как сделать гидротаранный насос.

 

 

Более подробная информация!

Скачать:

Явление гидроудара


Источник

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments