Трансивера схема – Схема и описание легендарного трансивера UW3D I-1 — Приемники, передатчики, трансиверы. — СХЕМЫ — Статьи

КВ радиостанции и трансиверы — полный список схем и документации на QRZ.RU

1«Альбатрос» печатные платы38783902.07.2007
2Belcom Liner 15 Owners guide3224362308.11.2007
3Cхема трансивера Лаповка UA1FA в формате jpg15000255216.11.2017
4DDS-синтезатор для UW3DI1261758809.01.2002
5DM2002M — техническое описание1473603.06.2004
6MFJ-9420 инструкция2151204614.09.2012
7QRP трансивер прямого преобразования 1514015.09.2001
8RA3AO печатные платы59696902.07.2007
9STAR-10 transceiver160811181504.05.2008
10TBY — схема44577303.03.2003
11Tokyo Hy-Power HC-150/20098158914.11.2014
12Tokyo Hy-Power HC-2000 инструкция292189814.11.2014
13Tokyo Hy-Power HL-1 инструкция1215231214.11.2014
14Tokyo Hy-Power HL-160V25A схема29188614.11.2014
15Tokyo Hy-Power HL-180V схема70229514.11.2014
16Tokyo Hy-Power HL-1KA399195714.11.2014
17Tokyo Hy-Power HL-1KGX66180914.11.2014
18Tokyo Hy-Power HL-200BDX234176414.11.2014
19Tokyo Hy-Power HL-250UDX схема1698220314.11.2014
20Tokyo Hy-Power HL-2K инструкция563214814.11.2014
21Tokyo Hy-Power HL-2KFX инструкция841222414.11.2014
22Tokyo Hy-Power HL-350VDX схема2174214414.11.2014
23TONO VM-240W инструкция1226151714.11.2014
24UW3DI23261312520.03.2001
25Welz CH-20A, CH-20N инструкция389157414.11.2014
26Yaesu VX-1R инструкция, service manual1327101814.11.2014
27Yaesu VX-2R инструкция, service manual1606123614.11.2014
28Yaesu VX-3R инструкция, service manual2874131714.11.2014
29Yaesu VX-5R инструкция, service manual79581914.11.2014
30Yaesu VX-6R инструкция, service manual318657214.11.2014
31Yaesu VX-7R инструкция, service manual143872414.11.2014
32Аматор КФ — многодиапазонный вариант2662019.12.2002
33Аматор КФ-1601383719.04.2002
34Ангара-1 комплект документации21200024609.04.2019
35Документация по радиостанциям Barrett 900 серии1254776430.07.2013
36Доработки одноплатного универсального тракта. 851615.09.2001
37Еще один способ подключения трансиверов ICOM к компьютеру473804.11.2005
38Интерфейс RS232 для поворотного устройства «YAESU G-800DXA»177614.02.2003
39КВ-трансивер «ДОН-2»938626.02.2003
40Контур-80 remix200524909.12.2010
41Коротковолновый трансивер «Урал Д-04»1279014.09.2000
42Коротковолновый трансивер. 1143515.09.2001
43КРС-812921729717.01.2004
44КСВ-метр Welz SP-400 мануал244188614.11.2014
45Микропроцессорный контроллер для UW3DI149527108.01.2002
46Микротрансивер «Тополь». 5738515.09.2001
47Микротрансивер (Иваново)991881519.03.2008
48Микротрансивер на ИМС серии 174 2534611.07.2001
49Мини-трансивер SW2012 Mini12762300020.05.2013
50Минитрансивер «Ливны» 2100416.09.2001
51Модернизация трансивера «Эфир-М»1281236322.07.2014
52Модуль обработки ПЧ/НЧ КВ трансивера332680612.10.2005
53Одноплатный универсальный тракт. 631915.09.2001
54ОКЕАН «SPACE»127642102.02.2008
55Океан М3 QRP210765117.09.2007
56Основная плата КВ-трансивера конструкции UT2FW1446009.05.2007
57Пеленг-Пионер38041120512.10.2010
58ПЕЛЕНГ-ПИОНЕР инструкция6469236919.05.2010
59Первый трансивер DX-мена 535300.00.0000
60Подробно о трансивере «Аматор 160» и его доработки.721619.07.2010
61Простой трансивер. 1371315.09.2001
62Радиолюбительский КВ-трансивер «SA612»1335127.06.2005
63Радиолюбительский коротковолновый трансивер «Дружба-М»4282019.09.2004
64Радиолюбительский трансивер DM /D-2002896309.02.2004
65Радиолюбительский трансивер DM-20052303010.04.2008
66Сравнительная таблица характеристик популярных трансиверов зарубежного производства456309.05.2003
67Сравнительный анализ характеристик зарубежных трансиверов230396607.05.2001
68Схема основной платы КВ-трансивера конструкции RA3PEM2511135411.08.2000
69Схема с высоким разрешением Yaesu FTDX3000 / FT DX-30001273965103.11.2016
70Трансивер «Пеленг-Ф»1492722415.09.2009
71Трансивер «Тюльпан — DSP»541670708.10.2017
72Трансивер D-94788016.11.2000
73Трансивер Digi-80753381215.04.2013
74Трансивер PICASTAR от немецкого радиолюбителя DK5NOA510044010.08.2018
75Трансивер UA3LGT и UA3LDW26751914.02.2002
76Трансивер UP2NV7891131822.03.2001
77Трансивер YES-98M-CW 492215.09.2001
78Трансивер ВОЛНА — схемы, модернизация213310.03.2015
79Трансивер с преобразованием вверх Светлоградский вариант 108925.02.2016
80Усилитель мощности трансивера «DM-2002»612313.10.2003
81Фотография трансивера YES98 459015.09.2001
82ЧМ радиостанция на 28 Мгц455507.08.2000
83Экспериментальный QRP-трансивер \»Полигон\»852112.01.2008
84ЭФИР-М. Альбом схем660627031.10.2004

трансивер

Сегодня пойдет речь о трансивере «Радио-76″ а точней о его модернизации, с позволения автора схемы я не стану его так называть, так как от трансивера » Радио-76″ там мало чего осталось.

Дело в том что у меня был большой промежуток так сказать творческого кризиса, и я не занимался радио спортом, в связи с переездом из сельской местности в город, и у меня не было возможности установить антенну хотя-бы на один диапазон я отложил свое любимое дело на долгих 7 лет. Но мысли о моем любимом хобби не покидали меня, и я решил собрать себе трансивер, но возникла другая проблема о выборе схемы, и тут выбор упал на трансивер  «Реверсивный тракт на биполярных транзисторах по мотивам Р-76» автор которой является Сергей Эдуардович US5MSQ http://us5msq.com.ua

P.S По секрету ))) На форуме Сергей Эдуардович активно отвечает на все вопросы которые возникнут в процессе сборки,за что нужно отдать должное, так как не все авторы своих «детище » так активно отвечают особенно на глупые вопросы. Проверенно лично.

Ниже я скину текст всех вопрос и ответов автора схемы которые возникали у других радиолюбителей которые собирали данный трансивер. От себя я скажу, если собирать внимательно, вопросов у Вас не должно возникнуть, так как у меня все заработать сразу, не считая моих ошибок в монтаже.

Ниже будут вырезки из постов с форума где радиолюбители обсуждали данный трансивер. Так как нет полного описания данной схемы, буду поступать таким методом.

Характеристики:

  • Общий уровень собственных шумов — порядка 35-45мВ
  • Общий Кус со входа смесителя — примерно 340-350тыс.
  • Приведенный ко входу уровень шума — примерно 0,12мкВ, а чувствительность со входа смесителя при с/шум=10дБ получилась порядка 0,4мкВ

АРУ начинает срабатывать при уровне порядка 4-5мкВ (S5-6), при этом реально держит сигнал минимум до 15мВ (+50дБ).

И так приступим к самой схеме.

Скачать печатную плату 

В конце статьи будет архив со всеми схемами для скачивания в полном размере.

Рис.1 Схема основной платы с картой напряжений.

Добавлю от себя, если соблюдать все напряжения которые указанны на схеме, вопросы по наладке сами по себе исчезнут.

 

Скачать печатную плату 

Рис.2 Схема полосовых фильтров с аттенюатором и раскачивающим усилителем на VT1.

 

Скачать печатную плату 

Рис.3 Схема ГПД.

 Скачать печатную плату 

Рис. 4 Схема ФНЧ и КСВ-метра.

 Вырезка сообщений из форума

US5MSQ: Что касается намоточных данных трансформаторов — возможно применение любых имеющихся у вас ферритовых колец диаметром 7-12 мм и проницаемостью 600-3000, важно обеспечить индуктивность для первого смесителя не менее 50мкГ (порядка 60-80), а для детектора/модулятора не менее 170 (порядка 200-250 мкГн). Просчитать конкретное кол-во витков для вашего колечка можно по стандартным формулам, удобно воспользоваться табличкой, разработанной Ю. Морозовым.

Важно обеспечить идентичность обмоток в самом трансформаторе. Я делал так — отмерял линейкой три одинаковых проводника (16см для Тр1 и Тр2 и 24см для Тр3 и Тр4), зачищал и облуживал концы, спаяв одну сторону в виде иголочки (этой стороной в дальнейшем будем вести намотку), зажимал в тиски и скручивал руками до уровня примерно 3-х скруток на см. Намотку ведем равномерно укладывая витки до полного заполнения — на колечках 2000НН 7х4х2 (для Тр3 и Тр4 склеены по 2) получилось порядка 15-16 витков. Не забываем перед намоткой сгладить острые грани колечек наждаком или надфилем.

Ну и еще один важный момент, по расчету и изготовлению катушек связи. Их наматывают, как правило, поверх середины контурной, поверх края контурной ближе к заземленному концу или, если каркас секционный, в соседней с заземленным концом секции. В этих случаях для более точного отражения коэффициента связи (взаимоиндукции) вводим поправочный коэффициент — для 1-го случая порядка 1-1,05, второго — 1,1-1,2 и третьего -1,3-1,4. Таким образом, если мы намотаем катушку связи с числом витков 1/10 от контурной, реально это будет примерно соответствовать коэффициентам 1/10, 1/11 и 1/13.

US5MSQ: катушки для ПДФ можно выполнять практически на любых, имеющихся у вас каркасах, и результаты (основные параметры ПДФ) будут практически одинаковые при достаточно малых потерях, разумеется речь идет о правильно спроектированных, а таких из опубликованных основное большинство.

Причина в том, что относительная ширина современных диапазонов (160,80,40м) достигает 9-10%, а это значит, что нагруженная добротность контуров будет порядка 8-10, а даже самые «левые» катушки имеют конструктивную добротность не менее 40-50, поэтому потери даже в трехконтурных ПДФ как правило не превышают3дБ.

Выбор нами трехконтурных ДПФ обусловлен исключительно желанием получить подавление зеркалки как можно большим, для примера на 80 м диапазоне при ПЧ 500кГц это порядка 38-40дБ (80-100раз), немного конечно, но двухконтурные здесь вообще бесполезны (не более 24-26дБ или всего -то 15-20 раз).

US5MSQ: Настройка ДПФ. Если нет ГКЧ, то ДПФ можно настроить и ГСС (ВЧ генератор) и даже просто по максимуму шумов эфира. Если не уверены, что антенна (или ГСС) согласованная, т.е. имеет выходное сопротивление 50-75 ом, то можно на входе включить штатный аттенюатор -20дБ, что обеспечит согласованный режим по входу ПДФ при любом источнике сигнала. Настраиваем приемник на середину диапазона, подключаем к выходу УНЧ динамик(телефоны) и какой-нибудь индикатор выхода (осциллограф, вольтметр переменного напряжения и т.п.). Регулятор громкости на максимум. В процессе настройки во избежание влияния АРУ регулировкой выхода ГСС или штатной РРУ (при работе с антенной) поддерживаем выходное напряжение порядка 0,3-0,4В. Для получения правильной (оптимальной) АЧХ в этом ДПФ все контуры должны быть настроены в резонанс на середине диапазона. Методик настройки без ГКЧ описано много (в том числе и на этой ветке). Одна из самых простых состоит из двух шагов:

— временно шунтируем резистором 150-220 ом катушку среднего контура и настраиваем первый и третий контура по максимуму сигнала в середине диапазона, убираем шунт
— для настройки в резонанс среднего контура, шунтируем такими же резисторами катушки перового и третьего контуров, убираем шунты.

Вот и все!

US5MSQ: Много крови попил S-метр, в первоначальном варианте это был даже не показометр — из-за большой крутизны управления АРУ стрелка стояла практически неподвижно при изменении сигнала на 70дБ. В Р-76М2 пошли по пути некоторого снижения крутизны управления, но это не на много улучшило ситуацию. Я отказался от уменьшения крутизны, т.к. сейчас работа АРУ мне нравится — можно не переживать и не дергаться к регулятору громкости, даже если рядом включился сосед с «киловаттом».

Было испытано несколько вариантов экспандеров, лучшие результаты (как по линейности, так и простоте схемы и регулировки) показала последняя схема (на Т5) -теперь выставляем только уровень S9(50мкВ) на середину шкалы, при этом шкала достаточна линейна до уровней +40дБ. В принципе немного отражаются и +50, +60дБ, но это практической ценности не представляет.

Показания этого простого S-метра никак не коррелируют с установками РРУ, что позволяет производить сравнительный отсчет уровней (наиболее часто востребованная функция) при любых установках усиления, правда точность будет невелика +- километр. Разумеется, что достаточно точный отсчет абсолютных уровней, как и сравнительный отсчет, будут возможны только при том усилении, при котором проводилась калибровка, в данном случае при Кус мах.

US5MSQ: Для получения хорошей селективности контуров, особенно первого, и устойчивой работы УПЧ индуктивность катушки не может быть любой, тем более чрезмерно (в разы) большей от оптимальной (в нашем случае 100мкГн).

US5MSQ:Рассматриваем последний вариант основной платы. В схеме применена электронная коммутация режимов RX/TX, для чего транзисторы Т11, Т13 включены на общий эмиттерный резистор R39. В режиме приема напряжение питания на микрофонный усилитель не подается, поэтому Т11 закрыт небольшим (порядка 0,28В) запирающим падением напряжения на R39, вызванным протеканием коллекторного тока Т13, величину которого выбираем по следующим соображениям.

Входное сопротивление этого каскада, включенного по схеме с ОБ, равно Rвх[ом]=0.026/I[мА]. Для обеспечения согласования со смесителем/детектором требуемые 50 ом получаются при токе 0,5мА. Кстати, при этом получаются и малые собственные шумы предУНЧ, что тоже немаловажно. При этом напряжение на коллекторе будет порядка 4,7+-0,5В, а на эмиттере Т14 примерно на 0,7В меньше, соответственно 4+-0,5В. При необходимости поточнее подобрать коллекторный ток Т13 можно резистором R47.

При переключении в режим ТХ, на микрофонный усилитель подается напряжение +9в TX SSB. Ток эмиттерного повторителя Т11 величиной порядка 9(+-1) мА, протекающий через общий R39, создает на нем падение напряжение 5(+-0,5)В, полностью запирающее Т13, отключая тем самым УНЧ. Естественно при этом напряжения на коллекторе Т13 и эмиттере Т14 будут близки к напряжению питания.

Но вернемся к микрофонному усилителю. При необходимости (большом отклонении) требуемый режим Т11 подбирается резистором R46.напряжение на коллекторе Т12 при этом будет порядка 6,2(+-0,6) В.

Резистор R40 выполняет двойную функцию — увеличивает выходное сопротивление эмиттерного повторителя до требуемых для нормального согласования модулятора 50-60 ом и ослабляет (делит) выходной сигнал МУО (максимальная амплитуда на выходе ограничителя порядка 0,25-0,28В) до уровня 0,15-0,18В, исключающего перегрузку модулятора при любых уровнях с микрофона и положениях движка R45.

US5MSQ: Надо соблюдать определенные правила перед первым включением!

Надо тщательно проверить монтаж на предмет ошибок!

Устанавливаем все регуляторы (РРУ,ГРОМКОСТИ, Уровень ТХ) на максимум, SA1 в положение SSB. Подав напряжение питания, желательно проконтролировать общий ток потребления — он не должен превышать 30мА. Далее проверяем режимы каскадов по постоянному току — на эмиттерах Т3, Т4, Т7, Т8 должно быть порядка +1…1,2В, эмиттере Т13 — порядка +0,26В (при необходимости требуемого добиваемся подбором R47).

Проверяем работу опорника — на правом выводе R50 должно быть переменное напряжение 0,7Вэфф (+-0,03В) частотой 500кГц. Если генерации нет, шунтируем кварц емкостью порядка 10-47нФ и сердечником L4 выставляем частоту генерации порядка 500кГц и убираем шунт — частота должна установиться точно 500кГц (+-50Гц). при сильном отличии величины напряжения, требуемого добиваемся подбором R58 и, возможно, С59. Если генерация не появилась и при шунтировании кварца, надо перебросить накрест выводы обмотки связи L4 и далее по приведенной выше методе.

Признаком нормальной работы детектора является заметное снижение шумов на выходе УНЧ при замыкании левого (по схеме) вывода резистора R50.

Настройку УПЧ тракта можно сделать традиционно с использованием ГСС (если он есть), но можно и своими, штатными, средствами. Для этого сначала настроим генератор CW — переключатель SA1 переводим в положение CW, замыкаем контакты ПЕДАЛЬ и КЛЮЧ. Подстройкой R11 устанавливаем на эмиттерах Т3, Т4, Т7, Т8 порядка +1…1,2В, т.е. пока, на время настройки, ставим усиление УПЧ в режиме ТХ на максимум. Подбором С34 (грубо) и триммером С39 (точно) добиваемся частоты генерации порядка 500,8-501кГц (точнее тональность подбираем под свой вкус (слух)при этом сигнал самоконтроля должен быть слышен в динамике). Уровень сигнала на эмиттере Т10 должен быть 0,7Вэфф+-0,1В -при необходимости подбираем R33. Подключаем осциллограф через высокоомный делитель или конденсатор 10-15пФ к катушки связи L1 и последовательной подстройкой сердечников катушек L2 (это резонанс контролируем по увеличению громкости самоконтроля ), L1 и затем триммеров С22,С18 добиваемся максимальных показаний осциллографа. При этих регулировках резонанс должен быть четкий и не на пределе регулировочных элементов -если это не так надо будет поточнее подобрать емкости соответственно С35, С5,С25 и С16.

На этом первичная настройка закончена, можно размыкать контакты ПЕДАЛИ и КЛЮЧа и наслаждаться приемом 

US5MSQ: давайте рассмотрим настройку тракта передачи, она довольно проста благодаря примененным схемотехническим решениям.

К выходу подключаем настроенный ПДФ (это важно, т.к. без ПДФ выходной сигнал смесителя представляет собой адскую смесь из остатков ГПД, основной и зеркальной составляющей), нагруженный на 50 Ом. Определяющим является требование получить максимальный уровень полезного сигнала и исключить перегрузку (обеспечить линейный режим) модулятора и смесителя. При напряжении ГПД (опорника) порядка 0,6-0,7 достаточная линейность сохраняется при уровне сигнала не более 200мВ, оптимально порядка 120-150мВ. Для защиты модулятора при любых уровнях с микрофона от перегрузки применен диодный ограничитель D6, D7, ограничивающих амплитуду на эмиттере Т11 уровнем порядка 0,25В, а с учетом R40 на модулятор поступает не более 150мВ. Триммером R45 выставляем требуемый уровень ограничения (или его отсутствия) для конкретного микрофона.

При настройке достаточно движок R45 переместить вверх по схеме, т.е. на максимум усиления и подать на вход модулирующий сигнал порядка 20-50мВ и частотой 1-2кГц (не критично). Подстройкой контуров ПЧ и ЭМФ добиваемся максимума. Оптимальный уровень усиления тракта передачи выставляем триммером R11, добиваясь на нагрузке напряжения порядка 50-60мВ — это обеспечивает оптимальную работу смесителя. Переключаемся в CW и подбором С40 добиваемся на выходе ПДФ порядка 70-80мВ. Вот и вся настройка.

US5MSQ: Что касается режимов работы РРУ/АРУ. Глубина регулировки зависит от того, насколько сильно мы сможет уменьшить ток коллектора транзисторов УПЧ (как минимум до 10-20 мкА), исключив при этом их полное запирание. Т.е. нижний уровень напряжения управления, поступающего на базы транзисторов, для получения максимальной эффективности РРУ/АРУ должен быть зафиксирован на оптимальной для конкретного типа транзисторов величине, за это отвечают диоды D1(РРУ) и D2(АРУ). Для диодов типа 1N4148 при указанных на схеме номиналах 0R1 и R2 это, как правило, обеспечивается. При необходимости режимы можно подстроить — например если происходит полное запирание транзисторов в режиме РРУ, значит маловато падение напряжение на D1 — его можно немного повысить увеличением тока через диод (например, подключив параллельно доп. резистор), если недостаточно, то заменой на более удачный диод.

Если РРУ работает нормально, то в режиме АРУ при необходимости глубину регулировки корректируют подбором R2.

 

Что касается ГПД, то я его не делал, точней собрал, но из-за размеров моего корпуса, я отказался от него и собрал синтезатор частоты.

Немного видео о работе трансивера, когда он еще был на стадии настройки.

Скачать архив с документацией  печатные платы в формате LAY

Описание работы основной платы КВ-трансивера

Александр Карнаух UR4QBP
E-mail ur4qbp (at) mail.ru
Запорожская обл., Васильевский р-н.,
с. Каменское., ул. Мира 4

Схема основной платы рис.1 трансивера построена на основе уже известных конструкций, а именно Дунай-99, Урал-84, Дружба-М. Выбраны наиболее удачные каскады (на мой взгляд и опыт при отработке данных конструкций). Принцип работы каскадов аналогичен работе схем указанных выше конструкций. В качестве ГПД использован синтезатор(89С52), ДПФы и УМ — все от Александра UT2FW.

О конкретных параметрах данной конструкции говорить ничего не буду, так как поверенных в метрологической лаборатории приборов не имею (в наличии имею осциллограф С1-64, генератор ВЧ Г4-18А, ВЧ вольтметр ВК7-9, частотомер самодельный на PICе). Но данная схема мною уже опробована и отлично работает на всех радиолюбительских КВ диапазонах (на сегодняшний день трансивер работает у Николая UR9QW, второй в стадии настройки). Поэтому на ваш суд предлагаю такой вариант построения схемы трансивера.

Основная плата построена по схеме с одним преобразованием частоты и представляет собой одноплатный тракт трансивера, обеспечивающий прием и передачу сигналов CW, SSB во всех любительских КВ диапазонах. Имея компьютер и соответствующее программное обеспечение (я использую MixW) можно работать любыми цифровыми видами связи, плата имеет отдельные вход и  выход для аудиомодема (гальванической развязки) компьютер-трансивер.

В режиме приема сигнал из ДПФ поступает на вход смесителя построенного по схеме заимствованной из [1]. Смеситель предусматривает работу с синтезатором частоты из [1]. Fгпд должна быть в два раза выше частоты необходимой для работы обычного смесителя (сигнал F/2 из синтезатора), так как триггер DD2 74AC74 делит частоту Fгпд  на два и на его выходах (выводы 5 и 6) мы имеем два противофазных меандра амплитудой 3,6…3,8В обеспечивающих работу транзисторных ключей смесителя. Таблица раскладки частот для ПЧ 8,8625 МГц приведена ниже.

Таблица раскладки частот работы преобразователя частоты

Диапазон,
М

Частота сигнала,
МГц

Частота ГПД,
МГц

Частота синтезатора (F/2),
МГц

Частота ПЧ,
МГц

1

2

3

4

5

160

1,81…2,0

10,6725…10,8625

21,345…21,725

8,8625

80

3,5…3,8

12,3625…12,6625

24,725…25,325

8,8625

40

7,0…7,1

15,8625…15,9625

31,725…31,925

8,8625

30

10,1…10,15

18,9625…19,0125

        37,925…38,025       

8,8625

20

14,0…14,35

5,1375…5,4875

10,275…10,975

8,8625

17

18,068…18,168

9,2055…9,3055

18,411…18,611

8,8625

15

21,0…21,45

12,1375…12,5875

24,275…25,175

8,8625

12

24,89…24,99

16,0275…16,1275

32,055…32,255

8,8625

10

28,0…29,7

19,1375…20,8375

38,275…41,675

8,8625

Сигнал ПЧ с выхода смесителя через конденсатор С4 поступает на вход диплексера построенного по общеизвестной схеме [3], ток покоя транзистора VT1 КП903 устанавливается в пределах 30…40 мА с помощью резистора R6. Сигнал ПЧ с выхода диплексера поступает на 6-ти кристальный кварцевый фильтр, выход которого нагружен на катушку связи контура L3C15, настроенного на Fпч. Сигнал ПЧ выделенный контуром L3C15 поступает на вход усилителя промежуточной частоты заимствованной из [3]. Каскад усиления ПЧ VT6, построенный по схеме с общим истоком на полевом транзисторе с двумя изолированными затворами BF998 с резонансным контуром в нагрузке. С катушки связи контура L5C33, настроенного на Fпч, сигнал ПЧ поступает на перестраиваемый кварцевый фильтр, выполняющий роль подчисточного фильтра. Ширина полосы пропускания фильтра изменяется с помощью напряжения +0…13,8В, поданного на вывод 3 платы через, который поступает на варикапы VD7, VD10, VD11  через R44, R48, R49 включенные последовательно конденсаторам С39, C46, C48 кварцевого фильтра и имеет перестраиваемую (0,6…2,7 кГц) полосу пропускания. Выход кварцевого фильтра ZQ2 нагружен на резистор R55. Сигнал ПЧ с фильтра через С50 поступает на усилитель ПЧ аналогичный каскаду VT6. Сток VT9 нагруженный на резонансный контур L7C63 настроенный на Fпч, и через катушку связи поступает на балансный модулятор-демодулятор SSB  высокого уровня построенный по двойной балансной схеме. Схема опорного генератора стандартная, заимствованная из [3], имеет два положения USB и LSB. Реле  К1 своими контактами включает последовательно с кварцем катушку L6 в режиме нормальной боковой полосы и конденсаторы С57, С56 — в режиме инверсной. Частота генератора выставляется ниже на 200…300 Гц от частоты нижнего ската кварцевого фильтра по уровню -6дБ. В режиме инверсной боковой полосы частота должна быть выше на 3…3,2 кГц. Сигнал НЧ с балансного модулятора-демодулятора выделенный на R74, C73 поступает на вход предварительного усилителя НЧ(VT13), выполненного по схеме заимствованной из [1]. С выхода предварительного УНЧ сигнал через регулятор громкости поступает на усилитель мощности низкой частоты, построенный на ИМС TDA2003 по стандартной схеме. Усиление каскада подбирается с помощью R97. Ключ VT15 запирает вход усилителя мощности НЧ в режиме передачи. Усилитель НЧ имеет два выхода для низкоомной и высокоомной нагрузок AF OUT и PHONE соответственно. Сигнал НЧ, усиленный предварительным усилителем VT13 подается на усилитель АРУ(DD3). Схема АРУ заимствована из  [1].  АРУ  имеет  две  ступени  быстрый  и  медленный  заряд,  C54 и C55 соответственно, с выхода АРУ +Uару поступает на вторые затворы каскадов ПЧ VT6, VT9, тем самым, регулируя усиление каскадов ПЧ.

В режиме передачи SSB сигнал из микрофона или модема компьютера поступает на вход усилителя-компрессора построенного на ИМС BA3308 (полный аналог КА22241). В данной схеме предусмотрена работа микрофонного усилителя с электретным микрофоном “китайского“ производства. Для работы с динамическим микрофоном необходимо удалить резистор R113 и подобрать усиление каскада с помощью R110. Усиление каскада для работы с модемом подбирается с помощью резистора R107. Усиленный сигнал НЧ до уровня ~0,6…0,8В поступает на вход эмиттерного повторителя-ФНЧ, предназначенного для согласования высокоомного выхода ИМС BA3308 с низким входным сопротивлением балансного модулятора-демодулятора. С выхода эмиттерного повторителя сигнал НЧ подается на усилитель VOX VT14 и на балансный модулятор-демодулятор VD19…VD26. Сформированный SSB сигнал через катушку связи контура L7C63 поступает на усилитель VT4, данный каскад особенностей не имеет. Сигнал усиленный VT4, подается на усилитель DSB VT3, собранный по схеме с общим истоком с резонансным контуром в нагрузке L3C15, на второй затвор транзистора подается напряжение PWR (+10…0V TX), которым регулируется выходная мощность трансивера. Для получения «фирменного» звучания можно установить ограничивающую цепочку C116, R130, VD31, VD32. Степень ограничения можно подобрать с помощью R130, один недостаток этой схемы, что при ручной регулировке выходной мощности будет изменяться степень ограничения. Усиленный DSB сигнал через катушку связи поступает на вход кварцевого фильтра ZQ1, выход котрого нагружен на диплексер на VT1. Далее сигнал поступает на смеситель DD1. На выходе формируется полный SSB сигнал с амплитудой около 300…400 мВ. В режиме телеграфа сигнал с телеграфного генератора VT5 подается на вход усилителя VT4 и далее аналогично SSB. Схема самоконтроля CW взята из [1], уровень сигнала самоконтроля устанавливается подстроечным резистором R131. Схема тракта передачи заимствована из [2]. Схема коммутации напряжений +12В RX/TX, VOX  и CW самоконтроля заимствованы из [1]. Чувствительность VOX устанавливается с помощью подстроечного резистора R121.

Таблица моточных данных платы

Позиционное обозначение

Диаметр каркаса

Сердечник

Марка и диаметр провода

Количество витков

L3, L5, L7

    5мм

СЦР

ПЭЛ 0,12…0,18мм

28 витков контурная и 6 витков поверх катушка связи, в экране

L6

5мм

СЦР

ПЭЛ 0,12…0,18мм

30 витков, в экране

Т2, Т3, Т4

К7…10

600-1000НН

ПЭЛ 0,18…0,22мм

8 витков в два провода без скрутки

Т1

К7…10

600-1000НН

ПЭЛ 0,18…0,22мм

II-я обмотка 12 витков в два провода, I-я обмотка 5 витков поверх II-ой,
провода без скрутки

Т5, Т6

К7…10

600-1000НН

ПЭЛ 0,18…0,22мм

8 витков в три провода,
провода без скрутки

L1, L2, L4, L9

Стандартные дроссели марки ДМ 0,1 индуктивностью 100мкГн

L8

Стандартный дроссель марки ДМ 0,1 индуктивностью 15мкГн

Схема модема рис.2 очень простая, объяснений как она работает, думаю, не требуется. Уровни сигналов устанавливаются программно в компьютере. Входной сигнал по «водопаду» программы MixW, выходной до начала ограничения уровня сигнала на выходе передатчика (контролируется по индикатору выходной мощности в трансивере или КСВ-метра).

Рис. 2. Схема модема

Настройка платы особенностей не имеет, настройка узлов и каскадов аналогична методике, которая изложена в описании выше перечисленных конструкций.

Детали платы все в основном бескорпусные, кроме кварцев, катушек индуктивности, электролитических конденсаторов, отечественных транзисторов (кроме КТ3130 и КТ3129), микросхем, стабилитронов и ВЧ-трансформаторов. Плата изготовлена с применением SMD элементов (в основном резисторы и конденсаторы), размер платы 198х110, плата двухсторонняя с металлизацией отверстий. Если кого-то заинтересует печатная плата с применением стандартных элементов, с удовольствием займусь разводкой таковой.

Всем кого заинтересовала данная схема, или возникли вопросы, с удовольствием отвечу по почте: ur4qbp (at) mail.ru, правда «Интернет» только когда я на работе, поэтому оперативное реагирование на письма не гарантирую. Также меня можно услышать на 80-ке по вечерам.

 Использованная литература при разработке данной конструкции
  1. Портативный КВ-трансивер Дунай-99.
  2. Коротковолновый трансивер Урал-84.
  3. Коротковолновый трансивер Дружба-М.

КВ. CW/SSB трансивер «ПАРУС» RD4AG (ех RK9AF) — Аппаратура — СХЕМЫ — Статьи

КВ. CW/SSB трансивер «ПАРУС»

В. Линьков RD4AG (ех RK9AF) [email protected]


Особенностями CW\SSB трансивера «Парус» являются простота, доступность и гибкость схемы, минимальное количество и возможность замены некоторых деталей, имеющихся в наличии у радиолюбителя.

Схема. Трансивер «Парус» состоит из нескольких блоков.

В режиме приёма (Rx) сигнал с антенны («А» блока УРЧ) поступает на П-контур и через С20 далее на истоковый повторитель (VT5) выполняющий роль согласования с низкоомным входом ПФ. Проходя через контакты реле поступает на реверсивную часть схемы: соответствующие полосовые диапазонные фильтры(L6, L7, C32-C34), балансный смеситель (д10-д13), на который приходит и сигнал с ГПД (Т7-Т9), двухкаскадный УПЧ (Т3, Т4), лестничный кварцевый фильтр, балансный детектор-модулятор (д2-д5) куда поступает опорная частота с ОКГ (Т5, Т6), далее УНЧ (Т1, Т2). С движка R35 низкочастотный сигнал поступает на УМЗЧ.

Переход трансивера с приёма на передачу осуществляется блоком управления. При замыкании контакта «педаль» меняется полярность выходных напряжений блока. И как следствие, включение всех реле, подключённых к шине +12в Тх.

В режиме передачи (Тх) с динамического микрофона сигнал усиливается (Т1, Т2) и поступает на балансный модулятор-детектор (д2-д5). DSB сигнал усиливается (Т3) и фильтруется кварцевым фильтром. Сформированный SSB сигнал усиливается (Т4) и поступает на балансный реверсивный смеситель (д10-д13), а отфильтрованный (ПФ) поступает на широкополосный усилитель (VT1 блока УРЧ), и резонансный (VT2), этот каскад можно собрать и на кп303+кт315. В коллекторе VT4 так же стоит резонансный контур.

В выходном каскаде используется неприхотливая низкочастотная лампа 6Р3С, которая в данном аппарате с успехом работает на всех кв диапазонах. Вместо неё можно применить так же лампы ГУ-19, ГУ-29, ГУ-17. 2хГУ-50. На входе лампы находится согласующий трансформатор.

П-контур согласует выходной каскад с антенной.

Для простоты на схеме не показаны полосовые диапазонные фильтры, их данные указаны в таблице.

CW генератор подключается к точке «А».

Кварцевый фильтр может быть на частоты от 5 до 10,7 мс, в которых применимы от 6 до 2 кварцев, в последнем случае это почти DSB-трансивер. Если у радиолюбителя имеется в наличие большее количество кварцев, то лучше добавить ещё один каскад ПЧ (в разрыв точки «А»), применяя ещё один кварцевый фильтр, улучшив чувствительность и избирательность. Методик изготовления лестничных кварцевых фильтров множество. В данной конструкции вместо одного «большого», например, 8 кристального, лучше применить два «маленьких», 6 + 4, 4 + 4, или 4 + 2 кварца и т.п. желательно, чтобы разнос частот кварцев был не более 30 гц, но и больший разнос частот не повод отказываться от повторения и в дальнейшем усовершенствования трансивера.

Детали: все трансформаторы имеют 15 витков (скрученых в 3 или 2 провода) ф600 или 1000-3000нн, к12х6х5 (в принципе, подойдут даже и чашки из феррита ф600 от пч фильтров транзисторных приёмников, не отламывая края чашек), L4 -4 витка, L5-20 витков на секционированном каркасе с подстроечником ф600, ПЭЛ 0,32. Катушка гпд 8 витков. Катушки ГПД можно сделать и на каждый диапазон коммутируя их с помощью реле Рэс 49 и т.п.

 

Частоты гпд. Для ПЧ 10,7 МГц.

1,830 – 2,000

12,530 – 12,700

3,500 – 3,800

14,200 – 14,500

7,000 – 7,100

17,700 – 17,900

14,000 – 14,350

3,300 – 3,650

18,068 — 18,168

7,368 – 7,468

21,000 – 21,450

10,300 – 10,750

24,890.- 24,990

14,190 – 14,290

28,000 — 29,700

17,300 – 19,000

 

Катушки ПФ намотаны на каркасах 7,5 мм с подстроечниками ф600, (160м и 80 м на секционированных). Расстояние между центрами катушек около 20 мм.

Диап.

С контуров

С

Связи

Число витков

Отвод

витки

Провод

диаметр

160м

560 пФ

47 пФ

14 х 3

6

0,32

80м

390 пФ

27 пФ

12 х 3

5

0,32

40м

110 пФ

23

3

0,32

20м

82 пФ

14

2

0,47

17м

47 пФ

9

1,5

0,32

15м

51 пФ

10

1,5

0,47

12м

47 пФ

8,5

1

0,47

10м

33 пФ

9

1

0,47

 

Катушки резонансного предусилителя драйвера имеют примерно такие же данные и подбираются при настройке (вместо отвода – катушка связи).

Катушки драйвера:

Отвод от середины.

П-контур:  2+2 + 1 + 2 + 1,5+2,5 + 9 + 20 + 41

10м 12м 15м 17м 20м 40м 80м 160м

Ø 30-40 мм

Ø провода на ВЧ 1 ммю,  на НЧ 0,5 мм

В качестве силового трансформатора используется ТС-180. Транзистор П217 (п213, п214, п216), установить на радиатор.

Блок питания может быть изготовлен отдельным блоком.

Принять все меры предосторожности при работе с высоким напряжением БП.

Улучшить параметры трансивера можно заменив Т4 на КП903, при этом вместо R18 и R19 поставить дроссели по 20-40 мкгн. Т2 на КТ3102Е КТ342 (или другой малошумящий с большим коэфф. ус.). Т9 – КТ610 изменив R24 на 33Е. Вместо 2х контурных ПФ сделать 3х контурные.

Настройка начинается с блока питания. Вначале отключают БП от трансивера. После проверки всех напряжений БП, подключаем +12в к блоку управления, на выходе «Rх» напряжение около +12в, а на «Тх» – 0. При нажатии «Педаль», напряжения меняются местами, и если при нажатой педали напряжение «Rх» не опускается до нуля, проверяют д7 и д9.

ВЧ напряжения на выходе генераторов порядка 1,2 – 1,5 в (без нагрузки). В режиме передачи на нижнем выводе R11 0,2 -0,4в (в микрофоне громкое «а»)

Полезный сигнал ВЧ на эмиттере VT3 (блок УРЧ) должен быть не менее 1в.

Напряжение на управляющих сетках в режиме передачи порядка – 22в.

Трансформатор на входе лампы имеет порядка 15-16 витков, точное количество подбирается экспериментально на 28 МГц по максимуму.

Количество витков П-контура лучше подобрать экспериментально, подключив эквивалент нагрузки 75 ом, по максимуму.


 

КВ. CW/SSB трансивер «ПАРУС»

В. Линьков RD4AG (ех RK9AF) [email protected]

Литература.

В. Першин «Урал 84м»

Б. Степанов, Г. Шульгин. «Радио77»

Я. Лаповок «Я строю кв радиостанцию»

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *