Содержание:
Современные инженеры регулярно проводят эксперименты по созданию устройств с нетрадиционной и нестандартной конструкцией, таких как, например, аппарат вращения на неодимовых магнитах. Среди этих механизмов следует отметить и соленоидный двигатель, преобразующий энергию электрического тока в механическую энергию. Соленоидные двигатели могут состоять из одной или нескольких катушек – соленоидов. В первом случае задействована всего лишь одна катушка, при включении и выключении которой происходит механическое движение кривошипно-шатунного механизма. Во втором варианте используется несколько катушек, включающихся поочередно с помощью вентилей, когда подача тока от источника питания осуществляется в один из полупериодов синусоидального напряжения. Возвратно-поступательные движения сердечников приводят в движение колесо или коленчатый вал. Соленоидный двигатель принцип работыВ соответствии с основной классификацией, соленоидные двигатели бывают резонансными и нерезонансными. В свою очередь, существует однокатушечная и многокатушечная конструкции нерезонансных двигателей. Известны также параметрические двигатели, в которых сердечник втягивается в соленоид, но занимает нужное положение при достижении магнитного равновесия после нескольких колебаний. При совпадении частоты сети с собственными колебаниями сердечника может произойти резонанс. Соленоидные двигатели отличаются компактностью и простотой конструкции. Среди недостатков следует отметить низкий коэффициент полезного действия этих устройств и высокую скорость движения. До настоящего времени эти недостатки не удалось преодолеть, поэтому данные механизмы не нашли широкого применения на практике. Рабочая катушка однокатушечных устройств включается и выключается с помощью механического выключателя, за счет действия тела сердечника или полупроводниковым вентилем. В обоих вариантах обратный ход обеспечивается пружиной, обладающей упругостью. В двигателях с несколькими катушками рабочие органы включаются только вентилями, когда к каждой катушке по очереди подводится ток в промежутке одного из полупериодов синусоидального напряжения. Сердечники катушек начинают поочередно втягиваться, в результате, это приводит к совершению возвратно-поступательных движений. Эти движения через приводы передаются на различные двигатели, выполняющие функцию исполнительных механизмов. Устройство соленоидного двигателяСуществуют различные типы механических и электрических устройств, работа которых основывается на преобразовании одного вида энергии в другой. Их основные типы широко используются во всех машинах и механизмах, применяемых на производстве и в быту. Существуют и нетрадиционные аппараты, работа над которыми осуществляется пока на уровне экспериментов. К ним можно отнести и соленоидные двигатели, работающие на основе магнитного действия тока. Его основным преимуществом считается простота конструкции и доступность материалов для изготовления. Основным элементом данного устройства является катушка, по которой пропускается электрический ток. Это приводит к образованию магнитного поля, втягивающего внутрь плунжер, выполненный в виде стального сердечника. Далее, с помощью кривошипно-шатунного механизма, поступательные движения сердечника преобразуются во вращательное движение вала. Можно использовать любое количество катушек, однако, наиболее оптимальным считается вариант с двумя элементами. Все эти факторы нужно обязательно учитывать при решении вопроса как сделать соленоидный двигатель своими руками из подручных материалов. Нередко рассматривается вариант с тремя катушками, отличающийся более сложной конструкцией. Тем не менее, он обладает более высокой мощностью и работает значительно равномернее, не требуя маховика для плавности хода. Работа данного устройства осуществляется следующим образом.
Соленоидный двигатель своими рукамиЛучшим материалом для катушек считается текстолит или древесина твердых пород. Для намотки используется провод ПЭЛ-1 диаметром 0,2-0,3 мм. Наматывание выполняется в количестве 8-10 тыс. витков, обеспечивая сопротивление каждой катушки в пределах 200-400 Ом. После намотки каждых 500 витков делаются тонкие бумажные прокладки и так до окончательного заполнения каркаса. Для изготовления плунжера применяется мягкая сталь. Шатуны могут быть изготовлены из велосипедных спиц. Верхнюю головку нужно делать в виде небольшого кольцеобразного ушка с необходимым внутренним диаметром. Нижняя головка оборудуется специальным захватом для крепления на шейке коленчатого вала. Он изготавливается из двух жестяных полосок и представляет собой вилку, которая надевается на шейку кривошипа. Окончательное крепление вилки осуществляется медной проволокой, продеваемой через отверстия. Шатунная вилка надевается на втулку, выполненную из медной, бронзовой или латунной трубки. Коленчатый вал делается из металлического стержня. Его кривошипы располагаются под углом 120 градусов относительно друг друга. На одной стороне коленчатого вала закрепляется распределитель тока, а на другой – маховик в виде шкива с канавкой под приводной ремень. Для изготовления распределителя тока можно использовать латунное кольцо или отрезок трубки подходящего диаметра. Получается одно целое кольцо и три полукольца, расположенные по отношению друг к другу со сдвигом на 120 градусов. Щетки делаются из пружинных пластинок или слегка расклепанной стальной проволоки. Крепление втулки распределителя тока производится на текстолитовый валик, надеваемый на один из концов коленчатого вала. Все крепления осуществляются с помощью клея БФ и шпонок, изготавливаемых из тонкой проволоки или иголок. Установка распределителя выполняется таким образом, чтобы включение первой катушки происходило при нахождении плунжера в самом нижнем положении. Если провода, идущие от катушек на щетки, поменять местами, то вращение вала будет происходить в обратном направлении. Установка катушек производится в вертикальном положении. Они закрепляются разными способами, например, деревянными планками, в которых предусмотрены углубления под корпуса катушек. По краям крепятся боковины из фанеры или листового металла, в которых предусмотрены места под установку подшипников под коленчатый вал или латунных втулок. При наличии металлических боковин, крепление втулок или подшипников производится методом пайки. Подшипники рекомендуется устанавливать и в средней части коленчатого вала. С этой целью предусматриваются специальные жестяные или деревянные стойки. Во избежание сдвига коленчатого вала в ту или иную сторону на его концы рекомендуется припаять кольца из медной проволоки, на расстоянии примерно 0,5 мм от подшипников. Сам двигатель должен быть защищен жестяным или фанерным кожухом. Расчеты двигателя выполняются исходя из переменного электрического тока, напряжением 220 вольт. В случае необходимости устройство может функционировать и при постоянном токе. Если же сетевое напряжение составляет всего 127 вольт, количество витков катушки следует снизить на 4-5 тысяч витков, а сечение провода уменьшить до 0,4 мм. При условии правильной сборки, мощность соленоидного двигателя составит в среднем 30-50 Вт. Как сделать соленоидный двигатель в домашних условиях |
Красивый соленоидный двигатель

Соленоидный двигатель — это нечто среднее между электродвигателем и ДВС, причём по звуку ближе ко второму. В первой половине девятнадцатого века такую конструкцию всерьёз собирались применять для приведения в движение механизмов. Теперь же на этом принципе строят небольшие макеты, либо работающие просто сами по себе, либо, реже, вращающие крыльчатки вентиляторов. Особенно те самодельщики, которые в детстве прочитали книгу о Карлсоне, запомнившие описанную там аварию, и не решающиеся строить макеты паровых машин, двигателей Стирлинга и ДВС. Автор Instructables под ником Dr Qui решил сделать соленоидный двигатель хоть и без крыльчатки, зато красивым.
Красивым — значит, без единого лишнего отверстия в подставке. Поэтому отладку мастер проводил на временной подставке из фанеры, и лишь определившись с расположением всех компонентов, перенёс их на постоянную. Она сосновая, вырезана ленточной пилой и отшлифована. С обратной стороны в ней сделана выемка для проводов, залитая вместе с ними термоклеем:

Так мастер выполнил клеммы для подключения источника питания:


Этот маховик когда-то был частью двигателя в видеомагнитофоне. Из него удалено всё, кроме, собственно, маховика и вала:

Кривошип выполнен из маховика от CD-привода и винтика от него же:



Для крепления всего этого Dr Qui чуть доработал алюминиевый уголок:

И приделал к нему такую штуку с подшипником от того же видеомагнитофонного двигателя:

К маховику для красоты приклеил эпоксидкой «блин» от жёсткого диска (см. КДПВ).
Коромысло вырезал из алюминия:

В центральное отверстие поместил подшипник:

Держатель коромысла сварил средством Durafix из нескольких алюминиевых деталей:
Немного погонял всё это на упомянутой выше фанерной подставке с первым попавшимся соленоидом от телефонного коммутатора. Здесь «блин» от жёсткого диска к маховику ещё не приклеен, а все механические соединения пока сделаны жёсткой проволокой. Контактной группы ещё нет, включать и выключать соленоид пока приходится вручную:

Оказалось, что соленоид быстро перегревается, а способ передачи усилия от него к коромыслу неоптимален. Мастер поискал у себя другой соленоид и нашёл такой:

Закрепил так:
Для передачи усилия от соленоида к коромыслу сделал L-образное звено и держатель для него. Здесь снова не обошлось без Durafix’а:
Передача усилий кусками жёсткой проволоки — это несерьёзно. А вот так солиднее:
В качестве контактной группы Dr Qui применил микропереключатель от CD-привода. К нему приклеил эпоксидкой гайку с полимерной вставкой, шток нарастил держателем, применяемым в авторучках для их крепления на рубашку:

Так мастер сделал кулачок, нажимающий на шток а определённых положениях маховика:

Соединил соленоид механически с L-образным звеном:

Соединил клеммы, микропереключатель и соленоид электрически:
Определившись с расположением компонентов, перенёс их с временной подставки на постоянную:

И запустил двигатель от 12-вольтового аккумулятора, применяемого в ИБП:
Сразу после включения двигателя маховик необходимо подтолкнуть, без этого он вращаться не начнёт, а соленоид перегреется.
Источник

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Электромагнитные двигатели: схема, принцип работы
Электромагнитные двигатели — это устройства, которые работают по принципу индукции. Некоторые люди называют их электромеханическими преобразователями. Побочным эффектом данных устройств считается обильное выделение тепла. Существуют модели постоянного и переменного типа.
Также устройства различают по типу ротора. В частности, есть короткозамкнутые и фазные модификации. Сфера применения электромагнитных двигателей очень широкая. Встретить их можно в бытовых приборах, а также промышленных агрегатах. Активно используются они и в самолетостроении.
Схема двигателя
Схема электромагнитного двигателя включает в себя статор, а также ротор. Коллекторы, как правило, применяются щеточного типа. Ротор состоит из вала, а также наконечника. Для охлаждения системы часто устанавливаются вентиляторы. Для свободного вращения вала имеются роликовые подшипники. Также существуют модификации с магнитопроводами, которые являются неотъемлемой частью статора. Над ротором располагается контактное кольцо. В мощных модификациях используется втягивающее реле. Непосредственно подача тока осуществляется через кабель.

Принцип работы двигателя
Как говорилось ранее, принцип действия построен на электромагнитной индукции. При подключении модели образуется магнитное поле. Затем на обмотке возрастает напряжение. Под силой действия магнитного поля в действие приводится ротор. Частота вращения устройства в первую очередь зависит от количества магнитных полюсов. Коллектор в данном случае играет роль стабилизатора. Подача тока в цепь происходит через статор. Также важно отметить, что для защиты двигателя используются кожухи и уплотнители.

Как сделать своими руками?
Сделать обычный электромагнитный двигатель своими руками довольно просто. В первую очередь следует заняться ротором. Для этого придется найти металлический стержень, который будет играть роль вала. Также потребуется два мощных магнита. На статоре должна находиться обмотка. Далее останется лишь установить щеточный коллектор. Электромагнитные двигатели-самоделки подсоединяются к сети через проводник.
Модификации для машин
Электромагнитные двигатели для автомобилей изготавливаются только коллекторного типа. Мощность их в среднем составляет 40 кВт. В свою очередь, параметр номинального тока равняется 30 А. Статоры в данном случае используются двухполюсные. У некоторых модификаций имеется клеммная коробка. Для охлаждения системы применяются вентиляторы.
Также в устройствах предусмотрены специальные отверстия для циркуляции воздуха. Роторы в двигателях устанавливаются с металлическими сердечниками. Для защиты вала используются уплотнители. Статор в данном случае находится в кожухе. Электромагнитные двигатели для машин с втягивающими реле встречаются редко. В среднем диаметр вала не превышает 3.5 см.

Устройства для самолетов
Работа двигателей данного типа построена на принципе электромагнитной индукции. Для этого статоры применяются трехполюсного типа. Также электромагнитные двигатели летательных аппаратов включают в себя бесщеточные коллекторы. Клеммные коробки в устройствах располагаются над контактными кольцами. Неотъемлемой частью статора является якорь. Вал вращается благодаря роликовым подшипникам. У некоторых модификаций применяются щеткодержатели. Также важно упомянуть о различных типах клеммных коробок. В данном случае многое зависит о мощности модификации. Электромагнитные двигатели для самолетов с целью охлаждения оборудуются вентиляторами.
Двигатели-генераторы
Электромагнитные двигатели-генераторы выпускаются со специальными бендиксами. Также схема устройства включает в себя втягивающие реле. Для запуска ротора применяются сердечники. Статоры в устройствах используются двухполюсного типа. Непосредственно вал у них крепится на роликовых подшипниках. У большинства двигателей имеется резиновая заглушка. Таким образом, ротор изнашивается медленно. Еще есть модификации с щеткодержателями.
Модели с короткозамкнутым ротором
Электромагнитный двигатель с короткозамкнутым ротором часто устанавливается в бытовых приборах. Мощность моделей в среднем равняется 4 кВт. Непосредственно статоры используются двухполюсного типа. Роторы крепятся в задней части двигателя. Вал у моделей применяется небольшого диаметра. На сегодняшний день чаще всего выпускаются асинхронные модификации.
Клеммные коробки в устройствах отсутствуют. Для подачи тока используются специальные полюсные наконечники. Также схема двигателя включает в себя магнитопроводы. Крепятся они возле статоров. Еще важно отметить, что выпускаются устройства с щеткодержателями и без них. Если рассматривать первый вариант, то в данном случае устанавливаются специальные зубчатые передачи. Таким образом, статор ограждается от магнитного поля. Устройства без щеткодержателя имеют уплотнитель. Бендиксы в двигателях устанавливаются за статором. Для их фиксации применяются шпонки. Недостатком данных устройств считается быстрый износ сердечника. Возникает он из-за повышенной температуры в двигателе.
Модификации с фазным ротором
Электромагнитный двигатель с фазным ротором устанавливается на станки и часто используется в тяжелой промышленности. Магнитопроводы в данном случае имеются с якорями. Отличительной чертой устройств принято считать большие валы. Непосредственно напряжение на обмотку подается через статор. Для вращения вала используется щеткодержатель. В некоторых из них установлены контактные кольца. Также важно отметить, что мощность моделей в среднем составляет 45 кВт. Непосредственно питание двигателей может осуществляться только от сети с переменным током.

Коллекторный электромагнитный двигатель: принцип работы
Коллекторные модификации активно применяются для электроприводов. Принцип действия у них довольно простой. После подачи напряжения в цепь задействуется ротор. Электромагнитное поле запускает процесс индукции. Возбуждение обмотки заставляет вал ротора вращаться. Тем самым приводится в действие диск устройства. Для уменьшения силы трения используются подшипники. Также важно отметить, что в моделях устанавливаются щеткодержатели. В задней части устройств часто имеется вентилятор. Для того чтобы вал не терся об уплотнитель, применяется защитное кольцо.
Бесколлекторные модификации
Бесколлекторные модификации в наше время не являются распространенными. Используются они для вентиляционных систем. Отличительной их особенностью считается бесшумность. Однако следует учитывать, что модели выпускаются небольшой мощности. В среднем указанный параметр не превышает 12 кВт. Статоры в них часто устанавливаются двухполюсного типа. Валы используются короткие. Для ограждения ротора применяются специальные уплотнители. Иногда двигатели заключаются в кожух, у которого имеются вентиляционные каналы.

Модели с независимым возбуждением
Модификации данного типа отличаются клеммными магнитопроводами. В данном случае устройства работают в сети только с переменным током. Непосредственно напряжение в первую очередь подается на статор. Роторы у моделей изготавливаются с коллекторами. У некоторых модификаций мощность достигает 55 кВт.
По типу якорей устройства отличаются. Щеткодержатели часто устанавливаются на стопорном кольце. Также важно отметить, что коллекторы в устройствах используются с уплотнителями. Диски в данном случае располагаются за статорами. У многих двигателей бендиксы отсутствуют.
Схема двигателя с самовозбуждением
Электромагнитные двигатели данного типа способны похвастаться высокой мощностью. В данном случае обмотки имеются высоковольтного типа. Подача напряжения происходит через клеммные контакты. Непосредственно ротор крепится за щеткодержателем. Уровень рабочего тока в устройствах составляет 30 А. В некоторых модификациях применяются якоря с щеткодержателями.
Также есть устройства с однополюсными статорами. Непосредственно вал находится в центре двигателя. Если рассматривать устройства большой мощности, то у них применяются вентилятор для охлаждения системы. Также на кожухе располагаются небольшие отверстия.
Модели с параллельным возбуждением
Электромагнитные двигатели данного типа изготавливаются на базе щеточных коллекторов. Якоря в данном случае отсутствуют. Вал в устройствах крепится на роликовых подшипниках. Также для уменьшения силы трения используются специальные лапы. У некоторых конфигураций есть магнитопроводы. Подключаться модели могут только к сети с постоянным током.
Еще важно отметить, что на рынке в основном представлены трехтактные модификации. Щеткодержатели в устройствах выполнены в форме цилиндров. По мощности модели отличаются. В среднем параметр рабочего тока на холостом ходе не превышает 50 А. Для усиления электромагнитного поля применяются роторы с высоковольтной обмоткой. У некоторых конфигураций используются наконечники на магнитопроводах.
Устройства последовательного возбуждения
Принцип работы двигателей данного типа довольно простой. Непосредственно напряжение подается на статор. Далее ток проходит по обмотке ротора. На данном этапе происходит возбуждение первичной обмотки. Вследствие этого приводится в действие ротор. Однако следует учитывать, что работать двигатели способны только в сети с переменным током. Наконечники в данном случае применяются с магнитопроводом.
Некоторые устройства оснащены щеткодержателями. Мощность моделей колеблется от 20 до 60 кВт. Для фиксации вала используются стопорные кольца. Бендиксы в данном случае располагаются в нижней части конструкции. Клеммники отсутствуют. Также важно отметить, что вал устанавливается различного диаметра.

Двигатели смешанного возбуждения
Электромагнитные двигатели данного типа могут использоваться только для приводов. Ротор здесь чаще всего устанавливается с первичной обмоткой. В данном случае показатель мощности не превышает 40 кВт. Номинальная перегрузка системы составляет около 30 А. Статор в устройствах применяется трехполюсного типа. Подключать указанный двигатель можно только в сеть с переменным током. Клеммные коробки у них используются с контактами.
Некоторые модификации оснащены щеткодержателями. Также на рынке представлены устройства с вентиляторами. Уплотнители чаще всего располагаются над статорами. Действуют устройства по принципу электромагнитной индукции. Первичное возбуждение осуществляется на магнитопроводе статора. Также важно отметить, что в устройствах применятся высоковольтная обмотка. Для фиксации вала используются защитные кольца.
Устройства переменного тока
Схема модели данного типа включает статор двухполюсного типа. В среднем мощность устройства равняется 40 кВт. Ротор здесь применяется с первичной обмоткой. Также есть модификации, у которых имеются бендиксы. Устанавливаются они у статора и играю роль стабилизатора электромагнитного поля.
Для вращения вала применяется ведущая шестерня. В данном случае лапы устанавливаются для уменьшения силы трения. Также используются полюсные наконечники. Для защиты механизма применяются кожухи. Магнитопроводы у моделей устанавливаются лишь с якорями. В среднем рабочий ток в системе поддерживается на уровне 45 А.

Синхронные устройства
Схема синхронного двигателя включает в себя двухполюсный статор, а также щеточный коллектор. В некоторых устройствах применяется магнитопровод. Если рассматривать бытовые модификации, то в них используются щеткодержатели. В среднем параметр мощности составляет 30 кВт. Устройства с вентиляторами встречаются редко. У некоторых моделей применяются зубчатые передачи.
Для охлаждения двигателя на кожухе имеются вентиляционные отверстия. В данном случае стопорное кольцо устанавливается у основания вала. Обмотка используется низковольтного типа. Принцип работы синхронной модификации построен на индукции электромагнитного поля. Для этого в статоре устанавливаются магниты разной мощности. При возбуждении обмотки вал начинается вращаться. Однако частотность у него невысокая. Мощных модели имеют коллекторы с реле.
Схема асинхронного двигателя
Асинхронные модели являются компактными и часто используются в бытовых приборах. Однако в тяжелой промышленности они также являются востребованными. В первую очередь следует отметить их защищенность. Роторы в устройствах применяются только однополюсного типа. Однако статоры устанавливаются с магнитопроводами. В данном случае обмотка применяется высоковольтного типа. Для стабилизации электромагнитного поля есть бендикс.
Крепится он в устройстве благодаря шпонке. Втягивающее реле в них располагается за якорем. Вал устройства вращается на специальных роликовых подшипниках. Также важно отметить, что есть модификации с бесщеточными коллекторами. Используются они в основном для приводов различной мощности. Сердечники в данном случае установлены удлиненные, и располагаются они за магнитопроводами.
Соленоидный двигатель своими руками
Всем доброго времени. В данной статье будем рассматривать как автор сделал соленоидный двигатель своими руками.
Для соленоида автор взял кусок от телескопической радиоантенны.

Две шайбы подходящие по размеру.

Шайбы одел на антенну и зафиксировал супер клеем.
Затем автор взял медную изолированную проволоку длинной приблизительно 20 м.

И намотал её в одном направлении на корпус соленоида.
Далее автор изготовит шток соленоида из подходящего по диаметру обычного гвоздя.

Шток должен свободно перемещаться в трубке.

Далее отмеряет и отрезает лишнее.


Потом автор берёт корпус от шариковой ручки отмечает и обрезает лишнее.
Одевает этот кусок от ручки на шток и приклеивает клеем.


Затем в этой трубке он делает сквозное отверстие.


Далее параллельно отверстию автор вырезает канавку.
Проверяет.

Затем он берёт не большой деревянный брусочек с заранее просверленными отверстиями по краям.

И крепит соленоид к брусочку с помощью пластиковых хомутов (стяжек.)
Обрезает лишние концы.


Затем автор изготовит кривошипно-шатунный механизм. Для этого он возьмёт толстый медный провод снимет с него изоляцию и выгнет его как показано ниже на картинке.
Затем он возьмет ещё один кусок такой же проволоки и изготовит из него шатун. Вот так.
Далее установит шатун на своё место, одев с обеих сторон шатуна куски кембриков, для ограничения хода шатуна из стороны в сторону.
За основание автор взял кусок доски.

И два одинаковых бруска в них автор сделал по одному отверстию, Их автор будет использовать как опорные стойки вала.

Установил вал на стойки примерил и приклеил.
Затем ограничил осевое перемещение вала с помощью кусков кембрика.


На одну сторону вала автор одел за ранее выточенный из дерева маховик.

Затем он соединил шатун с соленоидом.
Затем отмерял нужное расстояние и приклеил соленоид.


Далее он взял кусок медной проволоки чуть меньше диаметром, чем брал на шатун.

И изготовил из неё контакты двигателя сначала постоянный.


А затем и управляющий контакт.

Затем у автора проверка.

Далее автор подключает соленоид к контактам.

Ну вот и готов у автора соленоидный двигатель.

А теперь тест от автора. В качестве питания автор взял батарею от шуруповёрта.

И подключает с помощью крокодильчиков для проводов.
Как все мы видим у автора работает всё прекрасно.


Видео самоделки:
Источник

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Строим соленоидный двигатель « Учи физику!
«Сердце» любой движущейся модели — двигатель. В большинстве моделей используются электрические моторы постоянного или переменного тока. Вращение выходной оси такого мотора передается колесам модели через редуктор. Реже применяется двигатель с воздушной тягой. Это малогабаритные компрессионные моторы с пропеллером, устанавливаемые на быстроходных плавающих, летающих и гоночных моделях.
Существует и еще один тип двигателя — соленоидный, принцип работы которого основан на магнитном действии тока. Знают его немногие, в то же время он наиболее прост в изготовлении, и это его основное преимущество.
Катушка, это которой пропущен ток, втягивает железный сердечник — плунжер. Движение сердечника можно преобразовать во вращательное движение вала, применив шатунно-кривошипный механизм. Катушек следует брать одну, две, три и более, соответственно изменяя распределительный механизм для тока. Проще всего сделать двухкатушечный двигатель (см. чертеж).
Трехкатушечный двигатель несколько сложнее, зато мощность его больше и работает он равномернее (даже без маховика). Действует он так: ток от сети поступает через щетку одного из соленоидов к распределителю тока, затем идет в данный соленоид. Пройдя по обмотке, ток возвращается в сеть через общие кольца и щетку распределителя. Возникающее при этом сильное магнитное поле втягивает внутрь катушки плунжер, который стремится к середине катушки, а шатун и кривошип поворачивают коленчатый вал. Вместе с валом поворачивается распределитель тока, пускающий вход следующий соленоид.
Второй соленоид включается еще при работе первого, тем самым помогая ему в нужный момент, когда сила тяги первого плунжера ослабевает (при уменьшении длины плеча силы при повороте кривошипа). За вторым соленоидом включается третий. Далее все повторяется.
Лучшие каркасы катушек (соленоидов) получаются из текстолита, другой материал — крепкое дерево (размеры см. на чертеже). Наматываются катушки проводом ПЭЛ-1 диаметром 0,2—0,3 мм по 8—10 тысяч витков так, чтобы сопротивление каждой из них было 200—400 ом. Катушки нужно наматывать до заполнения каркаса, делая через каждые 500 витков прокладки из любой тонкой бумаги. Для более мощных двигателей нужны катушки с сопротивлением не ниже 200 ом.
Плунжеры изготовляются из мягкой стали (железа). Длина их 40 мм, диаметр 11 мм.
Шатун легко сделать из велосипедной спицы (см. чертеж). Длина его 30 мм (между центрами головок). Верхняя головка шатуна представляет собой кольцеобразное ушко с внутренним диаметром 3 мм. Нижняя головка имеет специальный захват для шейки коленчатого вала. К прямому концу шатуна нужно припаять две полоски жести — получится вилка, надевающйяся на шейку кривошипа. Чтобы вилка не соскакивала, на концах полосок предусмотрены отверстия под медную проволоку для стягивания вилки.
Вилки шатунов надеты на втулки, изготовленные из латунной, бронзовой или медной трубки с наружным диаметром 4 мм, внутренним — 3 мм.
Коленчатый вал (см. чертеж) делается из спицы колеса мотоцикла «К-58». Согнуть из спицы хороший вал довольно трудно, поэтому он делается из четырех частей, соединенных шейками кривошипов диаметром 3 мм и длиной 18 мм. Кривошипы вала расположены под углом в 120°. Концы спиц, уже имеющих нужную форму, сначала расклепывают, а затем сверлят отверстия диаметром 3 мм под пальцы кривошипов. Когда шейки кривошипов вставлены на место, их следует припаять с нерабочей стороны.
С одной стороны вала насаживается распределитель тока, а с другой — маховик диаметром 40 мм (он же и шкив с канавкой для ремня).
Распределитель тока напоминает коллектор электромотора.
Ток идет по катушке в течение поворота на 180°. Тем самым другой соленоид помогает первому в конце периода его работы. Распределитель тока изготовляется из латунной охотничьей гильзы любого калибра или любой другой трубки диаметром 15—20 мм.
Отрезав втулку, следует расчертить ее на четыре кольца шириной по 5 мм. Один конец в виде целого кольца, а остальные три — полукольца, повернутые относительно друг друга на 120°. Щетки делаются из стальной проволоки, немного расклепанной, или любых пружинящих пластинок шириной не более 3—4 мм.
Полукольца распределителя в изготовлении еще проще. Нужно опять взять втулку длиной 20 мм. Один конец тоже оставляется в виде кольца шириной 5 мм, а другой — в виде полукольца шириной 15 -мм. Но
Насаживать эти детали следует с клеем БФ-2. Валик зажимается на валу гайками (предварительно в месте насадки нарежьте резьбу) или вкрепляется шпонкой (иглой).
Распределитель тока ставится на валу так, чтобы первая катушка включалась в тот •момент, когда ее плунжер находится в самом низком положении. Бели поменять местами два провода, идущие от катушек к щеткам, то получим вращение вала в обратном направлении. Схема включения — на чертеже.
Катушки устанавливаются вертикально и сжимаются двумя деревянными планками с углублениями под бока катушек. Перпендикулярно к планкам с обеих сторон укрепляются боковые стойки (фанера или листовой металл). В боковых стойках устанавливаются подшипники под вал или просто латунные втулки.
Если боковые стойки металлические, то подшипники припаиваются, а если фанерные — на места установки подшипников нужно приклеить фанерные кружки диаметром 20 мм для утолщения гнезд. Желательно установить подшипники -и в средней части коленчатого вала. Промежуточные подшипники укрепляются специальными стойками из дерева или жести.
Чтобы коленчатый вал не сдвигался в стороны, на его концах, с отступом по 0,5 .мм от подшипников, припаиваются кольца из медной проволоки. Обязательно защитите двигатель чехлом из жести, фанеры или органического стекла.
Рассчитан двигатель на сеть 220 в переменного тока, но может работать и от постоянного тока. Не трудно приспособиться -и к сети напряжением 127 в, уменьшив число витков катушек на 4—5 тыс. и увеличив сечение провода до 0,4 -мм. При аккуратном изготовлении двигателя гарантируется мощность в 30—50 вт на валу.
Изготовить такой двигатель может любой юный техник, лучше делать его в кружке или школьной мастерской.
Автор: В. НИРОШИН, Журнал Юный техник №4-65г.
Линейный электромагнитный соленоид: принцип работы и типы
В данной статье мы подробно поговорим про линейный соленоид, опишем принцип его работы, разберем конструкции линейного и вращательного соленоида, а так же вы узнаете как снизить энергопотребление соленоида.
Описание и принцип работы соленоида
Линейный соленоид работает на том же основном принципе, что и электромеханическое реле, описанное в предыдущем уроке, и точно так же, как и реле, они также могут переключаться и управляться с помощью транзисторов или полевых МОП-транзисторов. Линейный соленоид — это электромагнитное устройство, которое преобразует электрическую энергию в механическое толкающее или тянущее усилие или движение.

Линейный соленоид в основном состоит из электрической катушки, намотанной вокруг цилиндрической трубки с ферромагнитным приводом или «плунжером», который может свободно перемещать или скользить «ВХОД» и «ВЫХОД» в корпусе катушек. Соленоиды могут использоваться для электрического открывания дверей и защелок, открытия или закрытия клапанов, перемещения и управления роботизированными конечностями и механизмами и даже для включения электрических выключателей только путем подачи питания на его катушку.
Соленоиды доступны в различных форматах, причем наиболее распространенными типами являются линейный соленоид, также известный как линейный электромеханический привод (LEMA) и вращающийся соленоид. Эти виды и не только вы можете найти и приобрести на Алиэкспресс.

Оба типа соленоидов, линейный и вращательный доступны в виде удержания (с постоянным напряжением) или в виде защелки (импульс ВКЛ-ВЫКЛ), при этом типы защелки используются в устройствах под напряжением или при отключении питания. Линейные соленоиды также могут быть разработаны для пропорционального управления движением, где положение плунжера пропорционально потребляемой мощности.
Когда электрический ток протекает через проводник, он генерирует магнитное поле, и направление этого магнитного поля относительно его северного и южного полюсов определяется направлением потока тока внутри провода. Эта катушка проволоки становится « электромагнитом » со своими собственными северным и южным полюсами, точно такими же, как у постоянного магнита.
Сила этого магнитного поля может быть увеличена или уменьшена либо путем управления количеством тока, протекающего через катушку, либо путем изменения количества витков или петель, которые имеет катушка. Пример «электромагнита» приведен ниже.
Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит, и плунжер, который находится внутри катушки, притягивается к центру катушки с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.
Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.
Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера. Линейные соленоиды доступны в двух основных конфигурациях, которые называются «тягового типа», так как он тянет подключенную нагрузку к себе, когда они находятся под напряжением, и «толкающего типа», которые действуют в противоположном направлении, отталкивая его от себя при подаче питания. Как притягивающие, так и толкающие типы обычно имеют одинаковую конструкцию, с разницей в расположении возвратной пружины и конструкции плунжера.
Конструкция линейного соленоида вытяжного типа

Линейные соленоиды полезны во многих устройствах, которые требуют движения открытого или закрытого типа (например, внутри или снаружи), таких как дверные замки с электронным управлением, пневматические или гидравлические регулирующие клапаны, робототехника, управление автомобильным двигателем, ирригационные клапаны для полива сада и даже для дверного звонка. Они доступны как открытая рама, закрытая рама или герметичные трубчатые типы.
Вращательный соленоид
Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях).

Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.
Обычно доступные ротационные соленоиды имеют перемещения 25, 35, 45, 60 и 90 o, а также многократные перемещения к определенному углу и от него, такие как самовосстановление в двух положениях или возврат в нулевое вращение, например, от 0 до 90- до -0 ° , самовосстановление в 3 положениях, например от 0 ° до +45 ° или от 0 ° до -45 °, а также фиксация в 2 положениях.
Вращающиеся соленоиды производят вращательное движение, когда под напряжением, обесточено, или изменение полярности электромагнитного поля изменяет положение ротора с постоянными магнитами. Их конструкция состоит из электрической катушки, намотанной вокруг стальной рамы с магнитным диском, соединенным с выходным валом, расположенным над катушкой.
Когда катушка находится под напряжением, электромагнитное поле генерирует множество северных и южных полюсов, которые отталкивают соседние постоянные магнитные полюса диска, заставляя его вращаться на угол, определяемый механической конструкцией вращающегося соленоида.
Вращающиеся соленоиды используются в торговых автоматах или игровых автоматах, для управления клапанами, затворами камер со специальными высокоскоростными, низкоэнергетическими или регулируемыми позиционирующими соленоидами с высоким усилием или крутящим моментом, такими как те, которые используются в точечно-матричных принтерах, пишущих машинках, автоматах или в автомобилях.
Электромагнитное переключение
Обычно соленоиды, линейные или вращающиеся, работают с приложением постоянного напряжения, но их также можно использовать с синусоидальными напряжениями переменного тока, используя двухполупериодные мостовые выпрямители для выпрямления питания, которые затем можно использовать для переключения соленоида постоянного тока. Малые соленоиды типа DC могут легко управляться с помощью транзисторных или полевых МОП-транзисторов и идеально подходят для использования в роботизированных устройствах.
Однако, как мы видели ранее с электромеханическими реле, линейные соленоиды являются «индуктивными» устройствами, поэтому требуется некоторая электрическая защита через катушку соленоида для предотвращения повреждения полупроводникового переключающего устройства высокими обратными ЭДС. В этом случае используется стандартный «Диод маховика», но вы также можете использовать стабилитрон или варистор малого значения.
Снижение энергопотребления соленоида
Одним из основных недостатков соленоидов, особенно линейного соленоида, является то, что они являются «индуктивными устройствами», изготовленными из катушек с проволокой. Это означает, что соленоидная катушка преобразует часть электрической энергии, используемой для их работы, в «нагрев» из-за сопротивления провода.
Другими словами, при длительном подключении к источнику электропитания они нагреваются, и чем дольше время, в течение которого питание подается на соленоидную катушку, тем горячее становится. Также, когда катушка нагревается, ее электрическое сопротивление также изменяется, позволяя течь большему току, повышая ее температуру.
При постоянном входном напряжении, подаваемом на катушку, катушка соленоидов не имеет возможности остыть, потому что входная мощность всегда включена. Чтобы уменьшить этот самогенерируемый эффект нагрева, необходимо уменьшить либо количество времени, в течение которого катушка находится под напряжением, либо уменьшить количество тока, протекающего через нее.
Один из способов потребления меньшего тока заключается в подаче подходящего достаточно высокого напряжения на электромагнитную катушку, чтобы обеспечить необходимое электромагнитное поле для работы и посадки плунжера, но затем один раз активировать для снижения напряжения питания катушек до уровня, достаточного для поддержания плунжера, в «сидячем» или закрытом положении. Одним из способов достижения этого является последовательное подключение подходящего «удерживающего» резистора с катушкой соленоида, например:

Здесь контакты переключателя замыкаются, замыкая сопротивление и передавая полный ток питания непосредственно на обмотки электромагнитных катушек. После подачи питания контакты, которые могут быть механически связаны с плунжером электромагнитного действия, размыкаются, соединяя удерживающий резистор R H последовательно с катушкой соленоида. Это эффективно соединяет резистор последовательно с катушкой.
Используя этот метод, соленоид может быть подключен к его источнику напряжения на неопределенный срок (непрерывный рабочий цикл), так как мощность, потребляемая катушкой, и выделяемое тепло значительно уменьшаются, что может быть до 85-90% при использовании подходящего силового резистора. Однако мощность, потребляемая резистором, также будет генерировать определенное количество тепла, I 2 R (закон Ома), и это также необходимо учитывать.
Рабочий цикл соленоида
Другим более практичным способом уменьшения тепла, выделяемого катушкой соленоидов, является использование «прерывистого рабочего цикла». Прерывистый рабочий цикл означает, что катушка многократно переключается «ВКЛ» и «ВЫКЛ» на подходящей частоте, чтобы активировать механизм плунжера, но не дать ему обесточиться во время периода ВЫКЛ. Прерывистое переключение рабочего цикла является очень эффективным способом уменьшения общей мощности, потребляемой катушкой.
Рабочий цикл (% ED) соленоида — это часть времени «ВКЛ», когда на электромагнит подается напряжение, и это отношение времени «ВКЛ» к общему времени «ВКЛ» и «ВЫКЛ» для одного полного цикла операций. Другими словами, время цикла равно времени включения плюс время выключения. Рабочий цикл выражается в процентах, например:

Затем, если соленоид включен или включен на 30 секунд, а затем выключен на 90 секунд перед повторным включением, один полный цикл, общее время цикла включения / выключения составит 120 секунд, (30 + 90) поэтому рабочий цикл соленоидов будет рассчитываться как 30/120 сек или 25%. Это означает, что вы можете определить максимальное время включения соленоидов, если вам известны значения рабочего цикла и времени выключения.
Например, время выключения равно 15 секундам, рабочий цикл равен 40%, поэтому время включения равно 10 секундам. Соленоид с номинальным рабочим циклом 100% означает, что он имеет постоянное номинальное напряжение и поэтому может быть оставлен включенным или постоянно включен без перегрева или повреждения.
В этом уроке о соленоидах мы рассматривали как линейный соленоид, так и вращающийся соленоид как электромеханический привод, который можно использовать в качестве выходного устройства для управления физическим процессом. В следующем уроке мы продолжим рассмотрение устройств вывода, называемых исполнительными механизмами, и устройства, которое снова преобразует электрический сигнал в соответствующее вращательное движение, используя электромагнетизм. Тип устройства вывода, которое мы рассмотрим в следующем уроке — это двигатель постоянного тока.
Электромагнитный двигатель Radial Solenoid Engine своими руками
Экология потребления.Наука и техника:Одним из вариантов магнитного двигателя является продукт под названием Radial Solenoid Engine. Тестируется его режим работы.
В этом видео показан электромагнитный двигатель Radial Solenoid Engine, изготовленный своими руками. Это радиальный электромагнитный мотор, проверяется его работа в разных режимах. Показано, как расположены магниты, которые не приклеены, они прижаты диском и обмотаны изолентой. Но при больших оборотах все же происходит смещение и они склонны к тому, чтобы отойти от конструкции.
В данном тесте участвуют три катушки, которые соединены последовательно. Напряжение АКБ 12V. Положение магнитов определяется с помощью датчика Холла. Ток потребления катушки измеряем при помощи мультиметра.
Проведем тест на определение количества оборотов на трех катушках. Скорость вращения приблизительно 3600 оборотов в минуту. Схема собрана на макетной плате. Питание от аккумулятора 12 вольт, в схему включены стабилизатор, два светодиода, подключенные к датчику холла. 2-канальный датчик холла AH59, причем один канал открывается при прохождении рядом южного и северного полюсов магнита. Светодиоды периодически моргают. Управляющий мощный полевой транзистор IRFP2907.
Работа датчика Холла
На макетной плате расположены два светодиода. Каждый подключен к своему каналу датчика. На роторе стоят неодимовые магниты. Их полюса чередуются по схеме север – юг – север. Южный и северный полюса проходят поочередно рядом с датичком Холла. Чем выше частота вращения ротора, тем чаще мигают светодиоды.
Регулировка частоты вращения двигателя осуществляется датчиком Холла. Мультиметр определяет ток потребления на одной из катушек, перемещая датчик Холла. Изменяется количество оборотов. Чем выше обороты мотора, тем выше ток потребления.
Теперь все катушки соединены последовательно и участвуют в тесте. Мультиметр также снимет ток потребления. Измерение частоты оборотов ротора показало максимум 7000 оборотов в минуту. Когда все катушки подключены старт происходит плавно и без внешнего воздействия. Когда три катушки подключены, нужно помогать рукой. При торможении ротора рукой ток потребления увеличивается.
Подключены шесть катушек. Три катушки в одной фазе, три в другой. Прибор снимает ток. Каждой фазой управляет полевой транзистор.
Измерение количества оборотов ротора. Стартовые токи выросли и номинальный ток тоже возжрос. Двигатель быстрее достигает предельных оборотов приблизительно 6900 оборотов в минуту. Затормозить мотор рукой очень сложно.
К трем катушкам подключено питание 12 вольт. Другие 3 катушки замкнуты проводом. Двигатель набирать обороты стал медленее. Прибор снимает ток потребления. К трем катушкам подключено питание 12 вольт. Данные три катушки замкнуты проводом. Ротор раскручивается более медленно, но доходит до максимальных оборотов и работает нормально.
Мультиметр снимает ток замыкания с трех катушек. Ток короткого замыкания. Четыре катушки соединены последовательно. Их сердечники находятся параллельно магнитам ротора.
Прибор измеряет ток потребления. Разгоняется медленее, но у этого расположения катушек нет момента залипания. Ротор вращается свободно. опубликовано econet.ru