Драйвер для светодиодов из энергосберегающей лампы
Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.
Прогресс не стоит на месте и на смену энергосберегающим люминесцентным лампам приходят светодиодные источники света. Имея большую экономичность, они превосходят энергосберегающие лампы по экологичности, поскольку люминесцентные лампы содержат ядовитую ртуть, а светодиоды абсолютно безопасны (подробнее о вреде светодиодных ламп).
Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.
Использование платы питания энергосберегающей лампы в качестве драйвера для светодиодовТеоретическое обоснование
Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.
Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.
Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.
Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.
Практическая реализация идеи
Простейший источник питания светодиодов от сети 220В имеет следующий вид:
Примитивный источник питания для светодиодов от сети 220ВНа приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.
Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.
Ниже приведена схема, где вместо резистора используется гасящий конденсатор
Схема с гасящим конденсаторомИспользование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.
Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.
Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.
Расчет схемы произведен для светодиодов HL-654h345WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.
Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.
Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.
Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.
Используем драйвер энергосберегающей лампы
Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.
Переделка светодиодной лампы для питания светодиодовПеределка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.
Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.
Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.
Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.
Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.
Советы и предостережения
Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.
Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.
Понравилась статья? Расскажите о ней! Вы нам очень поможете:)
Светодиодная лампа из энергосберегающей своими руками
С развитием новейших технологий на полках специальных магазинов появилось множество осветительных приборов, каждый из которых отличается индивидуальными характеристиками яркости, экономичности и комфорта для глаз.
Изготовление светодиодной лампы из энергосберегающей без пайкиМного лет изготовители светодиодных ламп старались сконструировать приспособление, схожее по своим свойствам с обычной лампой накаливания, плюс ко всему малое потребление электроэнергии, низкий уровень тепловыделения и влияния на окружающих. В результате потребителям были представлены энергосберегающие и светодиодные лампочки.
Специалисты советуют отдавать предпочтение последним моделям, поясняя выбор рядом очевидных преимуществ. Задача усложняется для тех, кто хочет узнать, как переделать энергосберегающее устройство в светодиодное своими руками.
Основные отличия
Светодиодная лампа, так или иначе, обеспечивает помещению более яркое освещение. При напряжении 13 Вт она выдаёт 1000 лм, энергосберегающая — всего 800 лм.
Что касается теплоотдачи, она определяется по показателям поддержания оптимальной температуры в здании, сохранении в подходящем состоянии бытовой техники и мебели. И здесь тоже лидирует светодиодное изделие, обладая теплоотдачей 30,5 градусов при теплоотдаче энергосберегающего устройства 81,7 градусов.
Светодиодная лампаПоследнее изделие рассчитано на 8000 часов активной работы, тогда как для первого установлен рекордный срок эксплуатации — до 50000 часов. Причём светодиодная лампа с течением времени не теряет первоначального оттенка освещения и яркости, чего нельзя сказать об энергосберегающей.
Лавры первенства достаются светодиодным источникам и в процессе утилизации, их можно выбросить в мусорный контейнер. Энергосберегающий светильник, выброшенный на свалку, загрязняет окружающую среду (воздух и грунтовые воды) ядовитыми ртутными парами, в результате чего происходит сильнейшее отравление людей, животных и рыбы. Именно поэтому утилизация таких ламп должна проходить в соответствии с определёнными правилами.
Энергосберегающая лампаНесмотря на плюсы и минусы, светодиодные и энергосберегающие устройства являются взаимозаменяемыми — изготовители побеспокоились о соответствующем размере любой из ламп, и патронов для них.
Общим для двух конкурирующих аналогов является довольно качественный цветовой поток, обеспечивающий высокий уровень комфорта для сетчатки человеческого глаза.
Как сделать светодиодную лампу
Необходимые материалы
Для того чтобы переделать энергосберегающую лампочку в светодиодную своими руками, необходимо иметь при себе следующий список материалов:
- Сгоревшую, вышедшую из строя лампу.
- Небольшой кусок стеклотекстолита для соединения деталей между собой. Если есть другие идеи (кроме пайки), можете воспользоваться своей для решения вопроса, как крепить светодиоды.
- Комплект радиоэлементов, соответствующих определённой схеме, в том числе светодиоды. Специалисты советуют выбирать для сборки светодиодной лампочки своими руками обычные детали, которые в большом ассортименте представлены на каждом радиорынке, где их стоимость существенно ниже.
- Конденсатор объёмом 0,022 Mf, напряжение в котором составляет 400 V, одно сопротивление рассчитано на 1 мОм и пара сопротивлений на 200 Ом.
- Светодиоды — дешевле выпаять в нужной численности посредством ленты.
Изготовление схемы
Процесс создания схемы своими руками начинается с вырезания из текстолита окружности, диаметр которой равен 30 мм. Далее нанесите на круге дорожки, хорошо справляется с этой задачей лак для покраски ногтей. После покрытия одного слоя, отставьте деталь в сторону до тех пор, пока она полностью не высохнет.
Схема соединения элементовВ это время можно заняться химией, а именно своими руками изготовить массу, растворяющую медь. Для этого следует смешать медный купорос и обычную кухонную соль в соотношении 1:2. Обязательно добавьте небольшой объём тёплой воды (но не горячей!) и в полученную смесь окуните будущую плату. Уже через сутки вы заметите, как медь исчезла с текстолитового круга, осталась только та часть, которая была обработана лаком.
На завершающем этапе производится пайка. Однако прежде чем переходить к этой фазе, воспользуйтесь специальным растворителем и избавьтесь от слоя лака. Затем пролужите имеющиеся дорожки.
Схема светодиодной лампыВозьмите миллиметровое сверло и на участках фиксации элементов сделайте отверстия. Наконец переходите к полноценной пайке схемы. Если вы не новичок в работе с паяльником и имеете определённые навыки, для создания светодиодной лампочки с напряжением 220 V своими руками, точнее, платы её драйвера, достаточно выделить 30 свободных минут.
Процесс сборки не обходится без разбора старой энергосберегающей лампы. Пропилите полотнищем по металлу периметр на самом конце пластика. Вытащите все внутренние детали, оставьте только провода, исходящие от цокольной части старого светильника. Снова вооружитесь паяльником и зафиксируйте плату к этим проводам.
Закрепите схему, оснащённую светодиодами, на внутренней поверхности пластика. Перед окончательной поклейкой включите лампу, если она работает — воспользуйтесь термоклеем.
Как обойтись без пайки
Некоторых может не устраивать пайка, в этом случае в качестве альтернативы драйвер для изделия заменяется полноценным блоком питания, предназначенным для фиксации и работы светодиодной ленты. Именно за счёт применения целого куска ленты, а не её отдельных отрезков, пайка и глобальная переделка не требуются.
С чем могут возникнуть проблемы? С размерами блока питания. Здесь понадобится либо переделать электропроводку от А до Я (освещение здания сводится к одной ветке), либо каждый светильник или ряд изделий запитать другим трансформатором. Если дом оснащён точечными осветительными приборами, можно выделить из цепи самый первый и поместить перед ним блок питания, после чего вместо ламп на 220 V установить самодельные светодиодные модели 12 V.
Как собрать лампочки
Сборка освещающих изделий своими руками осуществляется из пластиковых труб, порезанных на отдельные отрезки. По сторонам труб с помощью паяльника закрепляется светодиодная лента, обязательно сверьтесь с параллельной схемой. На конце пучка проводов разместите два штырька, выступающих в качестве цоколя.
Если светильники оснащены традиционным патроном для фиксации лампы, процесс упрощается в разы — достаточно модернизировать старые энергосберегающие приборы, причём применять внутренние платы уже нет необходимости. Как и в предыдущий раз, образец разбирается, а все «внутренности», кроме проводов цоколя, изымаются. Колпачок, из которого выходили люминесцентные трубки, закрывается цилиндром, выполненным из пластика, на котором фиксируются участки светодиодной ленты. Эти ленты подключаются к проводам из цоколя.
При подключении учитывайте «+» и «-». Плюс желательно припаять к нижней составляющей цоколя. Если подключение не дало результатов, разрешить проблему можно, переподключив выход блока питания к проводам.
Заключение
В любом случае способов перехода на более экономичное освещение предостаточно. Светодиодная лампа, изготовленная на основе энергосберегающей, поможет сэкономить ваши деньги, а сам процесс особенно понравится тем, кто обладает развитым техническим мышлением.
Изготовление светодиодной лампы из негодной энергосберегающей
РадиоКот >Лаборатория >Радиолюбительские технологии >Изготовление светодиодной лампы из негодной энергосберегающей
Бум люминесцентных энергосберегающих ламп постепенно подходит к своему завершению. На смену им уже пришли светодиодные лампы, обладающие неоспоримыми преимуществами: лучшая экономичность, моментальный выход в рабочий режим, большой срок службы, они не содержат паров ртути и не излучают ультрафиолет после выгорания люминофора внутри колбы. Единственная заминка – это пока ещё высокая стоимость светодиодных ламп. Но если имеется вышедшая из строя люминесцентная энергосберегающая лампа, то её можно легко переделать в светодиодную, используя приведенные ниже способы.
Сначала небольшое предисловие.
Приобретённые несколько лет назад энергосберегающие лампы фирмы ECOLIGHT довольно таки быстро стали выходить из строя. Сначала перегорела нить накала в колбе одной лампы, но эта неисправность была оперативно устранена путём установки перемычки на печатной плате параллельно оборванной нити накала. Лампа замечательно зажигалась и от оставшейся целой нити накала. Затем та же участь постигла вторую лампу. После ремонта, поработав ещё где-то с полгода, перегорели и оставшиеся нити накала сначала в одной лампе, а через месяц и в другой. Связываться с люминесцентными лампами больше не захотелось, и возникла мысль о переделке вышедших из строя ламп в светодиодные.
Первая лампа имела мощность 18 Вт и довольно широкий корпус диаметром 55 мм, что натолкнуло на мысль установить в нём несколько десятков ультраярких белых светодиодов с рабочим током 20 мА, включив их в сеть последовательно через диодный мост, а в качестве гасящего балласта использовать конденсатор. В результате получилась схема, показанная на рисунке ниже:
Всего было использовано 40 светодиодов HL-654h345WC ø4.8 мм с яркостью 1,5 Cd и углом 140°. Схема собрана на двух печатных платах из одностороннего фольгированного стеклотекстолита:
Между собой платы скреплены при помощи одной стойки по центру. Вот что получилось в итоге:
Субъективно яркость свечения этой лампы оказалась примерно такая же, как и у 30-ваттной лампы накаливания, а потребляемая мощность – всего 1,1 Вт:
Оттенок лампы по сравнению с лампой накаливания получился намного холоднее.
Что интересно, однотипные и одинаковые по яркости светодиоды тёплого и холодного оттенка, имеющиеся в продаже, отличаются по цене в 4 раза, но даже применённые светодиоды тёплого свечения (более дорогие) по сравнению с лампой накаливания имеют синеватый оттенок. Что касается получившейся стоимости изготовленной светодиодной лампы, то она оказалась на уровне готовой покупной с аналогичным количеством светодиодов. Правда неизвестно, есть ли в этих готовых лампах на 220 В выпрямитель со сглаживающим конденсатором. Скорее всего, нет, ведь проще и дешевле соединить последовательно пары встречно включённых светодиодов и добавить балластный конденсатор. И пусть себе мигает лампа с удвоенной частотой сети, ведь китайскому производителю нет никакого дела до зрения потребителя.
Учитывая довольно высокую стоимость сорока светодиодов (0.125$ * 40 = 5$), для переделки второй лампы мощностью 9 Вт в корпусе диаметром 38,5 мм
было решено использовать один мощный трёхваттный светодиод. Выбор пал на EDEX-3LA1-E1 стоимостью 1.875$, имеющий следующие характеристики:
цветовая температура………………………….3200 К;
световой поток (при токе 700 мА)…………..130 лм;
угол свечения…………………………………….135°;
рабочий ток………………………………………700 мА;
напряжение……………………………………….4 В.
К этим светодиодам в продаже имеются готовые радиаторы “STAR” стоимостью 0.156$:
Чтобы получить ток величиной до 700мА для запитки такого мощного светодиода было решено использовать уже имеющийся преобразователь в перегоревшей люминесцентной лампе. Замкнув все выводы колбы лампы и намотав на имеющийся на плате дроссель дополнительную обмотку, такой преобразователь можно превратить источник питания с минимальными затратами. По сути, из лампы получается готовый электронный трансформатор, необходимо только обеспечить стабилизированный ток для питания светодиода.
Вот схема энергосберегающей лампы, срисованная прямо с платы:
Для переделки её в электронный трансформатор достаточно выпаять колбу, замкнуть между собой точки 2 и 4 платы и намотать дополнительную обмотку на дроссель L2. К дополнительной обмотке подключается выпрямитель с фильтром.
Для стабилизации тока через светодиод первоначально был опробован способ, предложенный в [1]. Суть его заключается в намотке дополнительной обмотки на управляющий трансформатор T1 и шунтировании её открывающимися полевыми транзисторами для срыва колебаний преобразователя при превышении выходного напряжения (тока). Однако ничего путного из этого не вышло. Как показал анализ работы приведенной выше схемы, для восстановления колебаний преобразователя необходимо время около 3 мс для заряда конденсатора C3 до напряжения пробоя динистора DB3 (30 В). Даже при очень кратковременном шунтировании дополнительной обмотки на Т1 время повторного запуска преобразователя составляло около 3 мс. В результате регулировочная характеристика преобразователя получается неполной. При попытке лишь “слегка” уменьшить выходное напряжение, к примеру до 90…95 %, на выходе фильтра выпрямителя (с дополнительной силовой обмотки дросселя) вместо постоянного напряжения сразу появлялись короткие положительные импульсы с относительно длительными провалами 3 мс. Т.е. пределы регулирования были возможны лишь на начальном небольшом участке работы преобразователя.
Поэтому было применено другое схемное решение, показанное на рисунке ниже:
Дополнительная схема представляет собой импульсный стабилизатор тока, собранный без применения специализированных микросхем на широко распространённой дешевой элементной базе. На дроссель лампы наматывается дополнительная обмотка, напряжение с которой подаётся на диодный мост VD1…VD4 с конденсаторами фильтра C1, C3. Использование мостовой схемы вызвано сложностью намотки на дроссель L2 вдвое большого числа витков с отводом от середины ввиду ограниченного места.
На микросхеме DA1 выполнен стабилизатор напряжения +2,5 В для питания компаратора DA2 и резистивного формирователя опорного напряжения R5, R6. Резистор R7 сопротивлением 0,1 Ом выполняет функцию датчика тока. На транзисторах VT1, VT2 собран силовой ключ. В исходном состоянии при подаче питания, пока ток через светодиод HL1 ещё не протекает, на выходе компаратора DA2 высокий уровень, VT1 закрыт а VT2 открыт через R4. Через дроссель L1 в нагрузку протекает нарастающий ток. При превышении на инвертирующем входе компаратора DA2 опорного напряжения последний переключается в состояние с низким уровнем на выходе. VT1 резко открывается и шунтирует переход з-и VT2, закрывая последний и вызывая ток самоиндукции в цепи VD5, L1, C4, C5, HL1, R7. После уменьшения напряжения на инвертирующем входе компаратора DA2 по мере разряда C4, C5, последний опять переходит в состояние с высоким уровнем на выходе. VT1 закрывается, VT2 открывается и весь процесс повторяется заново. Частота колебаний при входном напряжении 7 В составляет 50…70 кГц. Измеренный КПД импульсного стабилизатора тока составил 86%.
Величина тока через светодиод выбрана равной 0,6 А для более щадящего режима работы и меньшего его нагрева.
Процедура переделки энергосберегающей лампы
Вскрывается корпус лампы при помощи плоской отвёртки (крепление на защёлках). Верхняя часть с колбой осторожно утилизируется (Внимание! В колбе пары ртути! При повреждении колбы необходимо провести обработку окружающих контактировавших предметов раствором марганцовки). Из платы конденсатор C5 можно выпаять, т.к. в работе он не участвует. Закорачиваются точки 2 и 4 на плате. Выпаивается дроссель L2 и проводом МГТФ-0,1 наматывается дополнительная обмотка из 14 витков (практически до полного заполнения зазора). Лучше использовать именно МГТФ для хорошей гальванической развязки.
Дроссель впаивается на место. Не помешает проверить ESR-метром электролит C3. При возможности его лучше заменить на новый ёмкостью 4,7…10 мкФ х 400 В (105°С). Это уменьшит пульсации частотой 100 Гц на выходе преобразователя.
После этого изготавливается плата из одностороннего фольгированного стеклотекстолита:
Для изготовления дросселя L1 использован готовый ДП2-0,1 на 100 мкГн. С него ножом снята штатная обмотка и намотана новая проводом ПЭВ2 ø0,3 мм в равномерно по всей длине сердечника в 3 слоя. Индуктивность дросселя 51 мкГн. Можно использовать и покупной дроссель подходящих габаритов с индуктивностью 47 мкГн и рассчитанный на ток не менее 1,5…2 А.
Транзистор VT2 IRLML6401 можно попробовать заменить на IRLML6402.
Диоды VD1…VD4 SS14 можно заменить на любые подходящие SMD-диоды Шоттки, рассчитанные на ток не менее 1А и обратное напряжение 30…40В, например SM5818, SM5819.
Диод VD5 SS24 (2А, 40В) заменим на SS22, 10BQ015 или аналогичные.
Как было сказано выше, светодиод распаивается на готовый радиатор “STAR”, который в свою очередь устанавливается на более массивный радиатор. В данном случае использован радиатор со старой материнской платы. С отрезанными “ушками” крепления его габариты 37,5 х 37,5 х 6 мм. Радиатор крепится к дополнительной плате на 3-х стойках М3х15. Сама плата крепится к верхней части корпуса лампы несколькими витками изоленты. Между штатной и дополнительной платами необходимо проложить изоляционную прокладку, вырезанную, например, из нефольгированного стеклотекстолита.
Первое включение доработанной лампы желательно производить с нагрузкой в виде 5-ваттного резистора сопротивлением 5…6 Ом с последовательно включённым амперметром. К сети 220 В лампу безопаснее включать через обычную лампочку накаливания на 40…60 Вт. В нормальном режиме работы её спираль светиться не должна. На катоде VD5 должны присутствовать прямоугольные импульсы частотой 50…70 кГц. Напряжение на C3 должно быть 5…8 В, ток через нагрузку 0,6 А. Более точно величину тока можно выставить подбором сопротивления резистора R5. После этого можно подключать светодиод.
Субъективно яркость свечения доработанной таким образом лампы соответствует лампе накаливания мощностью 30 Вт. Оттенок тёплый, но по сравнению с лампой накаливания немного холоднее. Измеренная потребляемая мощность составила 3,3 Вт:
Себестоимость второго варианта светодиодной лампы составила около 3.2$.
Литература:
1) Как стабилизировать электронный трансформатор. А.Е.Шуфотинский. Радиоаматор №1/2010.
Файлы:
Datasheet на светодиод
Плата 1 в Layout
Плата 2 в Layout
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп
Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.
В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.
Можно посмотреть процесс изготовления самоделки в видео:
Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.
Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.
Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.
Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.
Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА , но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.
Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.
Шаг третий. Сборка светодиодной настольной лампы.
Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода.
Электронную плату питания и диодный мост разместил в корпусе подставки настольной лампы.
За час работы измерил температуру нагрева светодиода и она показала 40 градусов Цельсия.
По моим ощущениям освещенность от светодиода примерно соответствует лампе накаливания на 100 ватт .
Эта переделанная настольная лампа на светодиоде работает уже полгода. Нареканий нет, меня устраивает. В общем результате получился драйвер для светодиодов бесплатно и из бросовых материалов. Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Модернизация энергосберегающей лампы в светодиодную №1
Большое спасибо изготовителям современных энергосберегающих ламп. Качество их продукции постоянно заставляет шевелить мозгами и подталкивает к новым техническим решениям.Вот и в этот раз рассмотрим тему переделки вышедшей из строя энергосберегающей лампы в светодиодную. Сегодня мы пойдем по более традиционному пути с использованием драйвера для светодиода, но… Самой интересной частью переделки является сам светодиод.
На днях мне попали в руки несколько образцов китайской электронной промышленности. Эти светодиоды сами по себе интересны, хотя и не обладают выдающимися характеристиками. Но одно то, что данный светодиод обеспечивает круговую диаграмму направленности, поднимает его на совершенно новый уровень и дает нам в руки прекрасный инструмент для модернизации систем освещения.
В качестве радиатора я использовал уже известный из прошлой статьи алюминиевый универсальный профиль АП888 производства ООО «Юг-сервис». К сожалению у меня остался только обрезок толщиной чуть более 10 мм. Было опасение, что для светодиода мощность 9 Вт его может не хватить. Но стремление провести эксперимент победило.
Маленький недостаток данного профиля по отношению к новому светодиоду – центральное отверстие диаметром 8 мм, а резьба «хвоста» светодиода М6.
Выход самый простой:
— рассверливаем отверстие до 10 мм;
— в гайку М6 вкручиваем болт;
— аккуратно, ударяя молотком по головке болта, запрессовываем гайку в профиль. Болт нужен для того, чтобы случайно не замять резьбу в гайке.
Светодиод 7В, мощностью 7-9 Вт, 12 В, 600-800 мА. В качестве драйвера я использовал широко распространенный драйвер на 700 мА для трех светодиодов того же китайского производства.
Дальше как всегда все просто. Разбирать энергосберегающую лампочку умеем, главное не разбить колбу. И готовим весь комплект для сборки .
1. Просверлить отверстия в крышке корпуса цоколя для крепления радиатора и провода.
2. Плюсовой провод драйвера подпаять к центральному контакту светодиода. Не забудьте предварительно продернуть его через радиатор и крышку цоколя .
3. Нанести теплопроводную пасту (КТП-8) на резьбу светодиода и вкрутить его на место. Крепим крышку корпуса цоколя к радиатору.
4. Минусовой провод драйвера необходимо соединить с радиатором .
5. Впаять сетевые провода драйвера в цоколь.
6. Собрать все во едино.
7. Модернизированная лампа готова к эксплуатации.
Что касается моих опасений по поводу перегрева светодиода из-за недостаточного размера радиатора, то можно сказать, что они оказались беспочвенными. Температура в точке «светодиод-радиатор» после нескольких часов работы остановилась в районе 59-62 ºС (температура окружающей среды 23 ºС). В принципе допустимо, но если радиатор увеличить на 5-10 мм, то можно вообще ни о чем не беспокоиться.
Все просто, красиво и самое главное – доступно и не дорого.
Автор материала:
Пыжов Виктор Сергеевич
тел.: 8-918-529-0712
e-mail: [email protected]
Драйвер для светодиодов из энергосберегающей лампы.
Приобрел себе на пробу светодиоды 10 Вт 900лм теплого белого света на AliExpress. Цена в ноябре 2015года составляла 23 рубля за штуку. Заказ пришел в стандартном пакетике, проверил все исправные.Для питания светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы, представляющие собой преобразователи стабилизирующие ток, а не напряжение на своём выходе. Но так как драйверы для них(заказывал тоже на AliExpreess) были еще в пути решил запитать от балласта от энергосберегающих ламп. У меня было несколько таких неисправных ламп. у которых сгорела нить накала в колбе. Как правило, у таких ламп преобразователь напряжения исправен, и его можно использовать в качестве импульсного блока питания или драйвера светодиода.
Разбираем люминисцентную лампу.
Для переделки я взял 20 Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 20 Вт. Для 10 Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.
Установил перемычки в цепи розжига лампы.
На дроссель намотал 18 витков эмальпровода, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 9,7В. Подключил светодиод через амперметр, который показал проходящий через светодиод ток в 0,83А. У моего светодиода рабочий ток равен 900мА, но я уменьшил ток чтобы увеличить ресурс. Собрал диодный мост на плате навесным способом.
Схема переделки.
Светодиод установил на термопасту на металлический абажур старой настольной лампы.
Плату питания и диодный мост установил в корпус настольной лампы.
При работе около часа температура светодиода 40 градусов.
На глаз освещенность как от 100 ваттной лампы накаливания.
Эта светодиодная настольная лампа работает уже около месяца. Пока все нормально а дальше время покажет. В результате я получил бесплатный драйвер для светодиодов. Когда придут заводские драйвера сравню их работу с самоделкой.
Кому интересно можно посмотреть на видео.
www.youtube.com/watch?v=Glfcvr0iUYw
Модернизация энергосберегающей лампы в светодиодную №2
Тема переделки или модернизации вышедших из строя люминесцентных (энергосберегающих) ламп в светодиодные поднималась неоднократно. Да простят меня авторы этих статей, но большинство предложенных вариантов малоэффективны и уж точно не эстетичны. Виной тому сложности с элементной базой и комплектующими, а так же наш менталитет, когда мы пытаемся слепить конфетку из …Но спасибо корейцам, выпустившим в прошлом году замечательный светодиодный модуль Seoul Semiconductors Acrich3, который подключается к сети переменного тока 220 В без дополнительного источника питания. Производитель гарантирует, что при соблюдении условий эксплуатации (рекомендуемая рабочая температура не выше 70 ºС) данный модуль честно отработает не менее 50 000 часов. Не будем вдаваться в технические подробности, все понятно из рисунка.
В качестве комментария
По роду своей деятельности имею богатый опыт работы с различными источниками питания. Так вот указанный корейцами ресурс блока питания в 15 000 часов завышен примерно в 2 раза, это при условии использования высококачественных электролитов. Китайский же ширпотреб, имеющийся сейчас в широкой продаже, явно не входит в категорию качественных товаров.
Итак, с источником света разобрались. Следующий шаг – как его охладить. Городить банальный ребристый радиатор – не эстетично и неудобно. И тут без везения не обошлось. Оказывается, в России разработан и выпускается радиаторный профиль АП888, специально предназначенный для модулей этой серии.
Профиль универсальный, предназначен для установки трех типов модулей Acriche: AW3221 (4 Вт) и Acrich3 на 8 и 12 Вт.
Дальнейшая работа по модернизации перегоревшей энергосберегающей лампы не составила никакого труда и заняла от силы 15-20 минут.
1 Отрезать радиатор в размер, необходимый для обеспечения эффективного охлаждения модуля. Поставщик профиля рекомендует следующие размеры для обеспечения рабочей температуры не более 70 ºС:
— 4 Вт – 10-15 мм;
— 8 Вт – 30-35 мм;
— 12 Вт – 40-45 мм.
В данном случае «кашу маслом не испортишь», и я для 8 Вт взял радиатор 50 мм.
2 Разобрать энергосберегающую лампу.
3 Просверлить отверстия в крышке корпуса цоколя для крепления радиатора.
4 Все составные части – радиатор, модуль и фильтр к модулю, готовы к сборке.
5 Дальше все просто. Устанавливаем модуль на радиатор, не забудьте про теплопроводную пасту (рекомендую КТП-8). Крепим крышку корпуса цоколя к радиатору. Подпаиваем провода к модулю и фильтру. Затем все впаиваем в цоколь.
6 Осталось только собрать все воедино.
7 И включить в сеть.
Основываясь на личном опыте, могу с уверенностью сказать, что освещенность от такой модернизированной лампы выше, чем от 13-ти ваттной люминесцентной энергосберегающей.
Автор материала:
Пыжов Виктор Сергеевич
[email protected]