Как сделать блок питания: Как сделать блок питания, выбор схемы. — Радиомастер инфо – Блок питания своими руками

Как сделать блок питания, выбор схемы. — Радиомастер инфо

Заставка vКак известно, блок питания едва ли не самое распространенное электронное устройство. Простой блок питания сделать под силу даже начинающим. Но какую схему выбрать? Их столько, что многие теряются. В данной статье коротко рассказано об основных четырех типах схем и даны рекомендации их использования.

Перед тем, ка вы решили изготовить или подобрать готовый блок питания необходимо ответить на следующие вопросы:

  1. Какое напряжение должен выдавать блок питания? Это можно определить по характеристикам того устройства, которое будет подключаться к блоку питания.
  2. Какой ток должен обеспечивать блок питания? Это так же указано на устройстве, которое будет подключено. Если указана потребляемая мощность, то ток можно определить, разделив мощность на напряжение.

Учитывая сказанное, перейдем к рассмотрению основных типов схем.

  1. Бестрансформаторный блок питания с гасящим конденсатором.

Применяется при небольших токах, десятки миллиампер, редко сотни миллиампер. На практике используется для зарядки аккумуляторов небольших фонарей, питания светодиодов и т.д. Схема такого блока питания:

1v

Величина емкости С1 при активной нагрузке определяется по формуле:

форм1С1 – емкость, Ф

Iэфф – эффективное значение тока нагрузки, А

Uc — напряжение сети, В

Uн – напряжение на нагрузке, В

f -частота сети, 50 Гц

π — число 3,14

Если нагрузка не всегда подключена, или ее ток меняется, то схема должна содержать стабилитрон, который не позволит напряжению на конденсаторе С2 и нагрузке превысить допустимое значение:

2v

Величина емкости С1 рассчитывается с учетом максимального тока стабилитрона и тока нагрузки.

фор 2

В этой формуле: 3,5 — коэффициент, Iстmin — минимальный ток стабилитрона, Iнmax — ток нагрузки максимальный, Ucmin — напряжение сети минимальное, Uвых — напряжение выхода блока питания.

Тип емкости С1 К73-17 или подобные, рабочее напряжение не ниже 400 В. Можно С1 зашунтировать резистором несколько сотен кОм, для разряда конденсатора в выключенном состоянии.

Подробнее о расчетах таких схем рассказано в журнале Радио №5 за 1997 год (стр. 48-50).

Понятно, что при отключенной нагрузке блок питания будет потреблять мощность на работу стабилитрона, соизмеримую с мощностью нагрузки. КПД поэтому низкий. Это одна из причин использования таких схем только для малых токов. Работая с такими блоками питания важно помнить, что их детали имеют гальваническую связь с сетью и опасность поражения током велика.

  1. Второй тип схем, трансформаторные блоки питания. Вот основная схема.

3v

По такой схеме можно делать блоки питания практически на любые напряжения и токи. На практике они представлены от маломощных, например, блок питания антенного усилителя собранный в сетевой вилке, до сварочника, вес которого десятки килограмм.

Приблизительный расчет трансформатора можно посмотреть здесь, более подробный и точный здесь.

Если токи нагрузки большие, емкость фильтра С1 нужна большая, тысячи микрофарад. В этом случае после диодного моста нужно ставить сопротивление, несколько Ом, чтобы в момент включения, когда С1 разряжен, бросок зарядного тока не вывел из строя диодный мост.

Если токи несколько ампер, то на диодах будет рассеиваться большая мощность. Для ее снижения применяют диоды Шоттки, на них падает меньшее напряжение (до 0,5 В), в отличие от кремниевых диодов на которых при больших токах может падать больше 1 В.

Чтобы еще снизить потери, применяют двухполупериодный выпрямитель с двумя диодами и двумя обмотками. Вот его схема:

4v

В данном случае вторичных обмотки две. Они соединены последовательно. Мотаются проводом в половину тоньше, чем для схемы с четырьмя диодами. Так, что количество меди то же самое. Потери ниже вдвое, так как диода два. Допустим на каждом падает 1 В, при токе 10 А, это мощность потерь 10 Вт на каждом диоде. Если диода два вместо четырех, в тепло идет не 40 Вт, а 20. Польза очевидна.

Вышеприведенные схемы имеют существенный недостаток. Напряжение на выходе меняется при изменении напряжения сети. Как известно, допустимые изменения напряжения сети ±5%, от 220 В это составит (209-231) В, предельные изменения ±10%, (198-242) В. В процентном отношении так же будет изменяться и выходное напряжение.

Для устранения этого недостатка применяют стабилизаторы, от простейших на стабилитроне, иногда с транзистором, до стабилизаторов на микросхемах.

Например:

5v

Здесь 7812 (LM7812 или аналог) распространенная микросхема стабилизатор на 12 В. Основные правила применения таких микросхем:

— напряжение на входе от 14 В до 35 В, (при минимальном напряжении сети не менее 14 В при максимальном не более 35 В)

— максимальный ток, при длительной работе 1,5 А

— мощность, рассеиваемая без теплоотвода 1,5 Вт, с теплоотводом до 15 Вт (в некоторых справочниках пишут даже 9 Вт).

Главная ошибка, которую допускают при применении таких микросхем заключается в том, что в основном смотрят на ток и забывают про мощность. Например, от микросхемы хотят запитать нагрузку на напряжение 12 В потребляющую ток 1 А. Кажется, что это можно сделать без проблем, ведь максимальный ток этой микросхемы 1,5 А.

Но, допустим, в сети максимальное напряжение 242 В и на входе микросхемы 35 В. Эта микросхема компенсационного типа, т.е. все лишнее напряжение 35 – 12 = 23 В упадет на микросхеме. При этом мощность, которая будет рассеиваться на микросхеме будет равна 23В х 1А= 23Вт. А допустимая мощность, с радиатором, всего 15 Вт. Микросхема перегреется и сгорит. Для такого случая ее допустимый ток 15 Вт : 23 В = 0,65 А, и это с радиатором.

  1. Импульсные стабилизаторы в трансформаторных блоках питания.

Эти стабилизаторы имеют значительно меньшие потери, чем выше рассмотренные. В них регулирующий элемент работает в ключевом режиме. У него два состояния полностью открыт или полностью закрыт. Падение напряжения на нем при этом минимально и рассеиваемая мощность также. Величина выходного напряжения пропорциональна длительности выходных импульсов.

Uвых = tоткр/T × Uвх

Где:

Uвых — напряжение на выходе стабилизатора

tоткр – время открытого состояния ключа

Т — период импульсов

Uвх – входное напряжение стабилизатора

Схема, поясняющая принцип работы:

Принцип имп стаб напр

Как видим, здесь присутствует индуктивность L, в которой накапливается энергия и импульсный диод VD. Именно с помощью этих двух элементов, ну и конечно конденсатора С, установленного за индуктивностью, импульсы после ключа VT превращаются в постоянное напряжение.

Пример такой схемы на транзисторах:

стаб транз

И на микросхеме:

LM2596 имп стаб

  1. Импульсные блоки питания.

Это самые эффективные и малогабаритные блоки. У них нет большого понижающего трансформатора, даже при больших токах и мощностях. Пример наиболее мощного импульсного блока питания — сварочный инвертор, который при сварочных токах 250 А весит всего несколько килограмм.

Принцип работы.

Напряжение сети 220 В поступает на диодный мост и затем на фильтр (конденсатор). Напряжение приобретает значение 310 В (при напряжении сети 220 В). Это напряжение питает выходной трансформаторный каскад и генератор. Вся схема работает на частотах до 100 кГц и даже выше. На таких частотах трансформаторы делают из феррита и их габариты в десятки раз меньше, чем у трансформаторов, работающих на частоте сети 50 Гц. Как правило, сама схема импульсного блока питания является стабилизатором и напряжение на выходе не зависит от изменения напряжения сети. Современные импульсные блоки питания, как правило работают при изменении напряжения сети от 110 В до 240 В.

Пример схемы импульсного блока питания, поясняющий принцип работы, на наиболее распространенной микросхеме UC3842.

UC3842b1

Напряжение сети 220В через плату фильтра (ППФ) поступает на сетевой выпрямитель (СВ), конденсатор фильтра (Сф) и через обмотку трансформатора на ключ VT. Через сопротивление R3 уменьшенное напряжение поступает на вывод 7 для запуска микросхемы. После начала работы на вывод 7 дополнительно, через диод VD1, с обмотки трансформатора поступает питание в установившемся режиме.

Внутри микросхемы мы видим генератор (ГЕН), ШИМ (широтно-импульсный модулятор) для управления мощным ключом, выполненном на полевом транзисторе VT. На вывод 3 поступает сигнал обратной связи.

Практическая схема импульсного блока питания на микросхеме UC3842:

Схема м

Пример изготовления схемы блока питания для ноутбука можно посмотреть здесь.

Есть микросхемы импульсных блоков питания, совмещенные с мощным выходным ключом. Но их принцип работы аналогичен рассмотренному.

Вывод.

Если нужны токи десятки миллиампер блок питания можно сделать по схеме первого типа.

Дешевый блок питания, габариты которого не так важны можно собрать по схеме второго типа. Компенсационные стабилизаторы целесообразно применять на токах до 1 А.

Так же недорогой блок питания, даже со стабилизатором выходного напряжения, на токи до 3 А можно собрать по схеме третьего типа.

Ну а если нужен малогабаритный блок питания, с защитой от перегрузок, на токи больше 3 А, с малым уровнем пульсаций, устойчивый к изменениям напряжения сети — конечно нужно собирать по схеме четвертого типа.

Материал статьи продублирован на видео:

 

Блок питания своими руками.

Собираем регулируемый блок питания

Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.

С чего же начать сборку блока питания?

Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен:

регулируемый или нерегулируемый.

Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт — повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.

Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.

Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.

Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.

Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).

Схема блока питания

Параметры блока питания:

  • Выходное напряжение (Uout) – от 3,3…9 В;

  • Максимальный ток нагрузки (Imax) – 0,5 A;

  • Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;

  • Защита от перегрузки по току;

  • Защита от появления на выходе повышенного напряжения;

  • Высокий КПД.

Возможна доработка блока питания с целью увеличения выходного напряжения.

Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.

Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.

Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.

Регулируемый импульсный стабилизатор.

Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.

Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.

Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.

Особенности импульсных стабилизаторов.

К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.

Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.

Думаю, теперь понятно, чем хорош импульсный стабилизатор.

Детали и электронные компоненты.

Теперь немного о деталях, которые потребуются для сборки блока питания.

Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.

Где найти такой трансформатор?

Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.

Силовые трансформаторы
Силовые трансформаторы ТС-10-3М1 и ТП114-163М

Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.

Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.

Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.

Диодный мост на плате блока питанияТакже в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.

Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.

Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!

Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.

Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.

Самовосстанавливающийся предохранитель FRX050-90F
Самовосстанавливающийся предохранитель FRX050-90F

Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.

Список деталей, которые потребуются для сборки блока питания.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

МикросхемаDA1 MC34063
Диодный мостVDS1 (VD1-VD4)1-2 ампер, 600 вольтD3SBA10, RS207, DB107 и аналоги

Электролитические конденсаторы

C8, C9, C12330 мкФ * 16 вольтК50-35 или аналоги
C32200 мкФ * 35 вольт
КонденсаторыC1, C2, C4, C5, C10, C11, C130,22 мкФКМ-5, К10-17 и аналогичные
C60,1 мкФ
C7470 пФ
РезисторыR10,2 Ом (1 Вт)МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные
R3560 Ом (0,125 Вт)
R43,6 кОм (0,125 Вт)
R58,2 кОм (0,125 Вт)
Резистор переменныйR21,5 кОмСП3-9, СП4-1, ППБ-1А и аналогичные
Диод ШотткиVD2 1N5819
СтабилитронVD311 вольт1N5348
ДроссельL1, L2300 мкГн 
ДроссельL3 самодельный
Предохранитель плавкийFU20,16 ампер 
Самовосстанавливающийся предохранительFU10,5 ампер (на напряжение >30-40 вольт)MF-R050; LP60-050; FRX050-60F; FRX050-90F
Светодиод индикаторныйHL1любой 3 вольтовый 

Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. — внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно. Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.

Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD — дроссель).

SMD-дроссель
SMD-дроссель

Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.

Дроссель с радиальными выводами
Дроссель с радиальными выводами

Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 — 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.

Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.

Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.

Дополнения.

В зависимости от нужд можно внести в конструкцию те или иные изменения.

Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.

Защитный диод

Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.

В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.

В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.

Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.

Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:

Uвых = 1,25 * (1+R4/R3)

После преобразований получается формула, более удобная для расчётов:

R3 = (1,25 * R4)/(Uвых – 1,25)

Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.

Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.

При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.

Изготовление печатной платы.

Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.

В общем, выбрать есть из чего.

Налаживание и проверка блока питания.

Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» — взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.

Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!

P.S.

Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.

Самодельный блок питания

Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения Самодельный блок питания. Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов. В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ - схема

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А — минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом — ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие — раньше ограничить ток.

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ - схема 2

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ своими руками

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге — смотрите далее:

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ своими руками

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ 2

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ 3

Отдельная благодарность за улучшение схемы — Rentern. Сборка, корпус, испытания — aledim.

   Форум по БП

   Обсудить статью ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ


Мощный лабораторный блок своими руками


Приветствую, Самоделкины!
Сегодня мы с вами соберем мощнейший лабораторный блок питания. На данный момент он является одним из самых мощных на YouTube.

Все началось с постройки водородного генератора. Для запитки пластин автору понадобился мощный блок питания. Покупать готовый блок типа DPS5020 не наш случай, да и бюджет не позволял. Спустя некоторое время схема была найдена. Позже выяснилось, что этот блок питания настолько универсален, что его можно использовать абсолютно везде: в гальванике, электролизе и просто для запитки различных схем. Сразу пробежимся по параметрам. Входное напряжение от 190 до 240 вольт, выходное напряжение — регулируемое от 0 до 35 В. Выходной номинальный ток 25А, пиковый — свыше 30А. Также, блок имеет автоматическое активное охлаждение в виде кулера и ограничения по току, она же защита от короткого замыкания.

Теперь, что касается самого устройства. На фото вы можете видеть силовые элементы.


От одного взгляда на них захватывает дух, но свой рассказ хотелось бы начать совсем не со схем, а непосредственно с того, от чего приходилось отталкиваться, принимая то или иное решение. Итак, в первую очередь, конструкция ограничена корпусом. Это было очень большим препятствием в построении печатных плат и размещении компонентов. Корпус был куплен самый большой, но все равно его размеры для такого количества электроники малы. Второе препятствие — это размер радиатора. Хорошо, что они нашлись в точности, подходящие под корпус.

Как видим радиаторов тут два, но входе построения объединим в один. Помимо радиатора, в корпусе нужно установить силовой трансформатор, шунт и высоковольтные конденсаторы. Они никак не влазили на плату, пришлось их вынести за пределы. Шунт имеет небольшие размеры, его можно положить на дно. Силовой трансформатор был в наличии только таких размеров:

Остальные раскупили. Его габаритная мощность 3 кВт. Это конечно намного больше чем нужно. Теперь можно переходить к рассмотрению схем и печаток. В первую очередь рассмотрим блок-схему устройства, так будет легче ориентироваться.

Состоит она из блока питания, dc-dc преобразователя, системы плавного пуска и различной периферии. Все блоки не зависят друг от друга, например, вместо блока питания можно заказать готовый. Но мы рассмотрим вариант как сделать все своими руками, а вам уже решать, что купить, а что делать также. Стоит отметить, что необходимо установить предохранители между силовыми блоками, так как при выходе из строя одного элемента, он потащит за собой в могилу остальную схему, а это вылетит вам в копеечку.

Предохранители на 25 и 30А в самый раз, так как это номинальный ток, а выдержать они могут на пару ампер больше.
Теперь по порядку о каждом блоке. Блок питания построен на всеми любимой ir2153.

Также в схему добавлен умощненный стабилизатор напряжения для питания микросхемы. Он запитан от вторичной обмотки трансформатора, параметры обмоток рассмотрим при намотке. Все остальное — это стандартная схема блока питания.
Следующий элемент схемы — это плавный пуск.

Установить его необходимо для ограничения тока зарядки конденсаторов, чтобы не спалить диодный мост.
Теперь самая важная часть блока – dc-dc преобразователь.

Его устройство очень сложное, поэтому углубляться в работу не будем, если интересно подробнее узнать про схему, то изучите самостоятельно.

Настало время переходить к печатным платам. Вначале рассмотрим плату блока питания.


На нее не вместились ни конденсаторы, ни трансформатор, поэтому на плате имеются отверстия для их подключения. Размеры фильтрующего конденсатора подбирайте под себя, так как они бывают разных диаметров.

Далее рассмотрим плату преобразователя. Тут тоже можно немного подогнать размещение элементов. Автору пришлось сместить второй выходной конденсатор вверх, так как он не вмещался. Так же можете добавить еще перемычку, это уже на ваше усмотрение.
Теперь переходим к травлению платы.


Думаю, тут нет ничего сложного.
Осталось запаять схемы и можно проводить тесты. В первую очередь запаиваем плату блока питания, но только высоковольтную часть, чтобы проверить не накосячили ли мы во время разводки. Первое включение как всегда через лампу накаливания.

Как видим, при подключении лампочки, она загорелась, а это значит, что схема без ошибок. Отлично, можно установить элементы выходной цепи, а как известно, туда нужен дроссель. Его придется изготовить самостоятельно. В качестве сердечника используем вот такое желтое кольцо от компьютерного блока питания:

С него необходимо удалить штатные обмотки и намотать свою, проводом 0,8 мм сложенным в две жилы, количество витков 18-20.

Заодно можем намотать дросселя для dc-dc преобразователя. Материалом для намотки являются вот такие кольца из порошкового железа.

В отсутствие такого, можно применить тот же материал, что и в первом дросселе. Одной из важных задач является соблюдение одинаковых параметров для обоих дросселей, так как они будут работать в параллели. Провод тот же – 0,8 мм, количество витков 19.
После намотки, проверяем параметры.

Они в принципе совпадают. Далее запаиваем плату dc-dc преобразователя. С этим проблем возникнуть не должно, так как номиналы подписаны. Тут все по классике, сначала пассивные компоненты, потом активные и в последнюю очередь – микросхемы.
Настало время заняться подготовкой радиатора и корпуса. Радиаторы соединим между собой двумя пластинками вот таким образом:

На словах это все хорошо, надо бы заняться делом. Сверлим отверстия под силовые элементы, нарезаем резьбу.


Сам же корпус тоже немного подправим, отломав лишние выступы и перегородки.

Когда все готово, приступаем к креплению деталей на поверхность радиатора, но так как фланцы активных элементов имеют контакт с одним из выводов, то необходимо их изолировать от корпуса подложками и шайбами.

Крепить будем на винты м3, а для лучшей термо передачи воспользуемся не высыхающей термопастой.
Когда разместили на радиаторе все греющиеся части, запаиваем на плату преобразователя ранее не установленные элементы, а также припаиваем провода для резисторов и светодиодов.

Теперь можно тестировать плату. Для этого подадим напряжение от лабораторного блока питания в районе 25-30В. Проведем быстрый тест.


Как видим, при подключении лампы идет регулировка по напряжению, а также ограничения по току. Отлично! И эта плата тоже без косяков.

Тут же можно настроить температуру срабатывания кулера. С помощью подстроечного резистора производим калибровку.
Сам же термистор нужно закрепить на радиаторе. Осталось намотать трансформатор для блока питания на вот таком гигантском сердечнике:


Перед намоткой необходимо рассчитать обмотки. Воспользуемся специальной программой (ссылку на нее найдете в описании под видеороликом автора, пройдя по ссылке «Источник»). В программе указываем размер сердечника, частоту преобразования (в данном случае 40 кГц). Также указываем количество вторичных обмоток и их мощность. Силовая обмотка на 1200 Вт, остальные на 10 Вт. Также нужно указать каким проводом будут мотаться обмотки, жмем кнопку «Рассчитать», тут нет ничего сложного, думаю разберетесь.

Посчитали параметры обмоток и начинаем изготовление. Первичка в один слой, вторичка в два слоя с отводом от середины.

Изолируем все с помощью термоскотча. Тут по сути стандартная намотка импульсника.
Все готово к установке в корпус, осталось разместить периферийные элементы на лицевой стороне таким образом:

Сделать это можно довольно просто, лобзиком и дрелью.

Теперь самая трудная часть — разместить все внутри корпуса. В первую очередь соединяем два радиатора в один и закрепляем его.
Соединение силовых линий будем проводить вот такой 2-ух миллиметровой жилой и проводом сечением 2,5 квадрата.

Также возникли некие проблемы с тем, что радиатор занимает всю заднюю крышку, и там невозможно вывести провод. Поэтому выводим его сбоку.


На этом все, сборка завершена. Перед закрытием крышки проводим тестовое включение.

Блок завелся, теперь закрываем верхнюю крышку и идем тестировать. Для теста сначала воспользуемся лампочками накаливания на 36В 100Вт.

Как видим, блок держит их без труда. Данный вольтамперметр, который купил автор, не может измерить максимальный ток блока даже шунтом, хоть и написано на сайте, что с шунтом может измерять до 50А. Не совершайте такую же ошибку и возьмите себе стрелочный амперметр — надежнее будет. А по поводу проверки — не переживайте, сейчас вы убедитесь в том, что максимальный ток устройства свыше 25А. Для этого воспользуемся предохранителем на 25А и пустим его в короткое замыкание.

Его просто плавит, а это значит, что ток тут больше 25 ампер. Также попробуем плавить различные предметы.


Скрепка, шайба и даже шило — ничто не устояло перед мощью данного блока.

Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

КАК СДЕЛАТЬ БЛОК ПИТАНИЯ

Всем людям, и даже по роду занятий далеким от электротехники и электроники известно, что любому электрическому устройству, будь то двигатель, обогреватель, компьютер или сотовый телефон для работы необходимо питание. Питание может быть, как от сети, от блока питания, так и от гальванических элементов или аккумуляторов. Причем последние также нужно периодически подключать для заряда к блоку питания. 

Адаптер питания

Адаптер питания 220В

Все пользуются такими адаптерами питания, которые понижают напряжение сети до необходимого для питания наших устройств напряжения, выпрямляют его, фильтруют, часто применяется стабилизация напряжения на выходе. Все эти необходимые операции, прежде чем питание поступит к вашему устройству, выполняет блок питания. В этой статье мы подробно разберем, для чего нужна каждая из этих операций. Сразу скажу, что блоки питания делятся на трансформаторные, и импульсные, последние более сложны для понимания начинающим, и их мы в этой статье касаться не будем.

Блок питания усилителя с трансформатором

Блок питания усилителя с трансформатором

На фото выше блок питания мощного усилителя. Как ясно становится из названия в основе трансформаторных блоков питания лежит трансформатор. Именно с его помощью мы получаем из 220 вольт напряжения сети нужные нам для питания аппаратуры 9, 12, 18 вольт и любые другие напряжения. Все зависит от того, на какое напряжение вторичной обмотки рассчитывался трансформатор. Разумеется, трансформатор может не только понижать, но и повышать напряжение. Посчитать, какое напряжение будет на выходе, можно через коэффициент трансформации:

  • U1 = напряжение первичной обмотки.  
  • U2 = напряжение вторичной обмотки.
  • w1 = количество витков первичной обмотки.   
  • w2 = количество витков вторичной обмотки.
  • кт  = коэффициент трансформации.

Коэффициент трансформации - формула

На трансформаторах часто пишут количество витков первичной и вторичной обмоток. Зная эти цифры, можно узнать, не подключая трансформатор, какое напряжение будет у нас на выходе, посчитав по формуле, через коэффициент трансформации. Также по ним можно ориентироваться, если нам требуется домотать какое-то количество витков, для изменения напряжение на выходе, либо если мы собрались мотать новую обмотку, например проводом большего сечения. Внешне можно определить обмотку, вторичная это, или первичная, по толщине проводов подходящих к выводам трансформатора. Вторичная обмотка, обычно бывает выполнена проводом значительно большего сечения. Но ориентироваться только на это нельзя, обязательно нужно померить сопротивление обмоток мультиметром в режиме омметра. Сопротивление первичной обмотки может быть порядка 300 Ом, тогда как сопротивление вторичной, из-за того что в ней относительно малое количество витков, может быть близко к нулю. Разница в сечении связана с тем, что мощность у нас, что на первичной, что на вторичной обмотке практически одинаковая, но так как в первичной напряжение обычно значительно выше, то и токи протекают в ней при одинаковой мощности значительно меньшие, чем во вторичной. Следовательно, для того, чтобы провода у нас не перегревались, вторичная обмотка и выполняется более толстым проводом. Те, кто видели разобранными сварочные аппараты с трансформаторами, знают, что вторичная обмотка у них значительно толще первичной, потому что сваривают как раз низким напряжением и большим током. Так выглядит график тока до диодного моста:

Ток до моста - график

После трансформатора выходит переменный ток, а для питания аппаратуры необходим, как известно постоянный. Поэтому ток необходимо выпрямить. Существуют разные виды выпрямителей, одно полупериодные, двух полупериодные  выпрямители со средней точкой, но эти схемы имеют определенные недостатки. Чаще всего в выпрямителях применяется мостовая схема, или говоря другими словами, всем известный диодный мост. Разберем его более подробно.

Диодный мост схема

Диодный мост — схема

На рисунке изображена схема подключения моста. Диодный мост имеет в своем составе 4 диода, соединенных по специальной мостовой схеме. Подключается в схеме мост 4 контактами, их видно на схеме. Это 2 контакта, которые соединяются со вторичной обмоткой трансформатора, и оставшиеся 2 контакта, с них снимают плюс и минус. Так выглядит график после моста:

Ток после моста - график

Выводы на диодном мосту обычно бывают подписаны или обозначены. Для питания маломощной нагрузки бывает достаточно и моста на 0.5 Ампера или на 1 Ампер, например такого как на фото ниже: 

Диодный мост на фото

Диодный мост на фото

Тогда как для выпрямления значительных токов могут потребоваться мощные диоды или мосты, которые для лучшего теплоотведения крепят на радиатор. Такие диоды имеют крепление с резьбой, позволяющее прикрутить такой диод на радиатор:

Мощный диод

Мощный диод

Радиатор может быть разной формы и размеров, выполнен из стали или алюминиевого сплава. Часто это простая пластинка П–образной формы, с отверстием под гайку или с резьбой внутри. Ниже на фото приведен радиатор для стабилизатора, такие же радиаторы применяются для охлаждения транзисторов.

Радиатор пластина

Радиатор пластина

Но ток после диодного моста у нас получается пульсирующий, и не годится для питания, даже не требовательной аппаратуры. Необходим фильтр. Для этого применяется электролитический конденсатор большой емкости, например 1000 мкф, 2200 мкф и выше. Особенно нуждаются в хороших фильтрах усилители. 

Электролитический конденсатор

Электролитический конденсатор

На конденсаторах обычно указывается максимальное допустимое напряжение и емкость в микрофарадах, что мы и видим на фото выше. Также электролитические конденсаторы имеют полярность, если спутать которую, впаять конденсатор и включить устройство, это  может привезти к порче конденсатора, к его вздуванию, а иногда даже к взрыву, если на конденсаторе нет специальных клапанов — насечек, для снятия давления. 

Вздувшийся конденсатор

Вздувшийся конденсатор

Ток после фильтра у нас будет выпрямленный, но еще не стабилизированный, что необходимо для питания большинства цифровой техники. Для стабилизации тока часто применяют интегральные стабилизаторы, напряжение на входе которых может изменяться в заданных пределах, а на выходе будет стабильно неизменным. Для питания цифровой техники часто требуется напряжение питания 5 вольт. Для этих целей удобно применять стабилизатор КРЕН5 или 7805. 

Стабилизатор l7805cv

Стабилизатор l7805cv

Такие стабилизаторы существуют и на другие напряжения. В блоках питания используются часто стабилизаторы в корпусе ТО-220 рассчитанные на токи в 1 ампер без радиатора. Если требуется, чтобы стабилизатор работал при больших токах, его требуется установить на радиатор. Соответственно чем больший ток стабилизируется, тем больше должна быть площадь ребер радиатора. Существуют также схемы регулируемых блоков питания, напряжение на выходе которых можно плавно менять, вращая ручку переменного резистора. Такие схемы могут быть реализованы как на транзисторах, так и на микросхемах:

Регулируемый блок питания на транзисторах схема

Регулируемый блок питания на транзисторах схема

Выше приведена схема блока питания на транзисторах. Регулируемый блок питания можно собрать и намного проще, если применить микросхему lm338. Ниже приведена её схема подключения:  

Регулятор напряжения на микросхеме - схема

Регулятор напряжения на микросхеме — схема

Достаточно подать на эту схему напряжение после фильтра выпрямителя, до 28 вольт, и получить на выходе плавно регулируемое напряжение от 1.2 до 25 вольт. Стабилизатор,  конечно же, нужно будет установить на радиатор. Как видим, собрать блок питания под свои потребности, под силу даже начинающим. С вами был AKV.

   Схемы для начинающих

Мощный импульсный блок питания на 12 В своими руками

Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.
Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.
Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.
Мощный импульсный блок питания на 12 вольт своими руками

Детали


Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 — 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
В архиве можно скачать схему и плату:

Мощный импульсный блок питания на 12 вольт своими руками
Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.
Мощный импульсный блок питания на 12 вольт своими руками
Мощный импульсный блок питания на 12 В своими руками

Схема импульсного блока питания на 12 В


Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.
Мощный импульсный блок питания на 12 В своими руками
В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.
Мощный импульсный блок питания на 12 В своими руками
Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.
Мощный импульсный блок питания на 12 вольт своими руками
Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

Проверка блока


Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.
Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.
Мощный импульсный блок питания на 12 вольт своими руками
В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.
Мощный импульсный блок питания на 12 вольт своими руками
Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.
Мощный импульсный блок питания на 12 вольт своими руками

Смотрите видео


пошаговое описание проектирования и постройки блока питания (фото, видео и схемы)

Какая вещь считается наиболее незаменимой у радиолюбителей и не только? Несомненно, это блок питания. К сожалению, готовые блоки питания не всегда бывают доступными в финансовом плане, поэтому для домашнего пользования они делают их самостоятельно.

Краткое содержимое статьи:

Как сделать блок питания?

У начинающего радиолюбителя когда-нибудь возникнет вопрос: как сделать простой блок питания самостоятельно в домашних условиях.

Перво-наперво необходимо определить, какой именно блок питания нужен и для каких точно целей. Блоки питания могут использоваться в разных сферах многими домашними мастерами.

Для того, чтобы сделать самостоятельно блок питания, необходимо разобраться с тем, как он устроен и как работает. Это поможет в дальнейшем осуществлять небольшой ремонт устройства при необходимости.

Определяем, какой именно блок нужен – регулируемый либо нет. Заранее, перед выполнением работ, необходимо найти все инструкции и схемы блоков питания, которые помогут сделать нужный вам прибор.

Отправить ответ

avatar
  Подписаться  
Уведомление о