Бп от компьютера применение – Какой блок питания необходим современному игровому ПК / Корпуса, БП и охлаждение

Содержание

Выбираем блок питания для компьютера | Блог

Блок питания — это важнейший компонент любого персонального компьютера, от которого зависит надежность и стабильность вашей сборки. На рынке довольно большой выбор продукции от различных производителей. У каждого из них по две-три линейки и больше, которые включают в себя еще и с десяток моделей, что серьезно запутывает покупателей. Многие не уделяют этому вопросу должного внимания, из-за чего часто переплачивают за избыточную мощность и ненужные «навороты». В этой статье мы разберемся, какой же блок питания подойдет для вашего ПК лучше всего?

Блок питания (далее по тексту БП), это прибор, преобразующий высокое напряжение 220 В из розетки в удобоваримые для компьютера значения и оснащенный необходимым набором разъемов для подключения комплектующих. Вроде бы ничего сложного, но открыв каталог, покупатель сталкивается с огромным числом различных моделей с кучей зачастую непонятных характеристик. Прежде, чем говорить о выборе конкретных моделей, разберем, какие характеристики являются ключевыми и на что стоит обращать внимание в первую очередь.

Основные параметры.

1. Форм-фактор. Для того, чтобы блок питания банально поместился в ваш корпус, вы должны определиться с форм-факторов, исходя из параметров самого корпуса системного блока. От форм-фактор зависят габариты БП по ширине, высоте и глубине. Большинство идут в форм-факторе ATX, для стандартных корпусов. В небольших системных блоков стандарта microATX, FlexATX, десктопов и других, устанавливаются блоки меньших размеров, такие как SFX, Flex-ATX и TFX.

Необходимый форм-фактор прописан в характеристиках корпуса, и именно по нему нужно ориентироваться при выборе БП.

2. Мощность. От мощности зависит, какие комплектующие вы сможете установить в ваш компьютер, и в каком количестве.

Важно знать! Цифра на блоке питания, это суммарная мощность по всем его линиям напряжений. Так как в компьютере основными потребителями электроэнергии являются центральный процессор и видеокарта, то основная питающая линия, это 12 В, когда есть еще 3,3 В и 5 В для питания некоторых узлов материнской платы, комплектующих в слотах расширения, питание накопителей и USB портов. Энергопотребление любого компьютера по линиям 3,3 и 5 В незначительно, по этому при выборе блока питания по мощности нужно всегда смотреть на характеристику «мощность по линии 12 В«, которая в идеале должна быть максимально приближена к суммарной мощности.

3. Разъемы для подключения комплектующих, от количества и набора которых зависит, сможете ли вы, к примеру, запитать многопроцессорную конфигурацию, подключить парочку или больше видеокарт, установить с десяток жестких дисков и так далее.

Основные разъемы, кроме ATX 24 pin, это:

Для питания процессора — это 4 pin или 8 pin коннекторы (последний может быть разборным и иметь запись 4+4 pin).

Для питания видеокарты — 6 pin или 8 pin коннекторы (8 pin чаще всего разборный и обозначается 6+2 pin).

Для подключения накопителей 15-pin SATA

Дополнительные:

4pin типа MOLEX для подключения устаревших HDD с IDE интерфейсом, аналогичных дисковых приводов и различных опциональных комплектующих, таких как реобасы, вентиляторы и прочее.

4-pin Floppy — для подключения дискетных приводов. Большая редкость в наши дни, поэтому такие разъемы чаще всего идут в виде переходников с MOLEX.

Дополнительные параметры

Дополнительные характеристики не так критичны, как основные, в вопросе: «Заработает ли этот БП с моим ПК?», но они так же являются ключевыми при выборе, т.к. влияют на эффективность блока, его уровень шума и удобство в подключении.

1. Сертификат 80 PLUS определяет эффективность работы БП, его КПД (коэффициент полезного действия). Список сертификатов 80 PLUS:

Их можно разделить на базовый 80 PLUS, крайний слева (белый), и цветные 80 PLUS, начиная от Bronze и заканчивая топовым Titanium.

Что такое КПД? Допустим, мы имеем дело с блоком, КПД которого 80% при максимальной нагрузке. Это означает, что на максимальной мощности БП будет потреблять из розетки на 20% больше энергии, и вся эта энергия будет преобразована в тепло.

Запомните одно простое правило: чем выше в иерархии сертификат 80 PLUS, тем выше КПД, а значит он будет меньше потреблять лишней электроэнергии, меньше греться, и, зачастую, меньше шуметь.

Для того, чтобы достичь наилучших показатель в КПД и получить «цветной» сертификат 80 PLUS, особенно высшего уровня, производители применяют весь свой арсенал технологий, наиболее эффективную схемотехнику и полупроводниковые компоненты с максимально низкими потерями. Поэтому значок 80 PLUS на корпусе говорит еще и о высокой надежности, долговечности блока питания, а так же серьезном подходе к созданию продукта в целом.

2. Тип системы охлаждения. Низкий уровень тепловыделения блоков питания с высоким КПД, позволяет применять бесшумные системы охлаждения. Это пассивные (где нет вентилятора вообще), либо полупассивные системы, в которых вентилятор не вращается на небольших мощностях, и начинает работать, когда БП становится «жарко» в нагрузке.

3. Отстегивающиеся кабели (модульная конструкция). Очень удобно, когда не нужно держать в корпусе весь пучок кабелей, а подключить только все необходимые. Кроме того, извлечь блок питания системного блока намного проще, особенно для полностью модульных, т.к. частично модульные идут с впаянными основными проводами.

Модульный:

Полумодульный:

Как выбрать?

Итак, в первую очередь нужно узнать, сколько ваш компьютер потребляет энергии?

1. Самый тяжелый, «хардкорный» и наиболее точный способ, это изучить обзоры комплектующих, где измеряется реальное энергопотребление каждого компонента в нагрузке. Не все хотят этим заниматься, вникать в такие тонкости, поэтому этот метод мы оставим для опытных пользователей (для которых и гайд этот не особо нужен).

2. Способ попроще — выяснить эту характеристику на официальном сайте производителя комплектующих, или в характеристиках товарных карточек DNS.

Основная нагрузка в любом ПК, это центральный процессор (CPU) и видеокарта, поэтому подбирать мощность блока питания нужно исходя именно из их энергопотребления. Все остальное, HDD, SSD, планки памяти, вентиляторы и прочее, «кушают» электричества крайне мало — единицы ватт. Энергопотребление HDD редко превышает 5-7 Вт в нагрузке, SSD и того меньше, от 0,5 до 3 Вт в зависимости от модели. Вентиляторы 0,5 -1,5 Вт.

Потребляемую мощность CPU можно сопоставить с его тепловым пакетом (TPD), который прописывают во всех без исключения моделях. Не совсем верно и точно, конечно, т.к. реальное энергопотребление может быть несколько меньше, но как хороший ориентир пойдет. Обычно значения фиксированные. Например, самые распространенные — 65 Вт, 95 Вт, 125 Вт.

Мощность видеокарты можно узнать из спецификаций конкретного чипа, на котором она построена. Если вы затрудняетесь с этим вопросом, то есть очень простой, но грубый и топорный метод определить максимальное потребление видеокарты — это посчитать её разъемы + мощность по слоту PCI-E. Спецификации разъемов по предельной нагрузке:

1. 6 pin — 75 Вт; 2. 8 pin — 150 Вт; 3. По слоту расширения PCI-E — 75 Вт .

Т.е. все просто: если у вашей видеокарты есть один 6 pin и один 8 pin, то это 150+75+75=300 Вт максимум.

Еще раз повторю, это очень грубый способ, но если вы не можете найти никаких данных, то в крайнем случае можно воспользоваться и им.

Итак, вы узнали потребление вашего процессора, видеокарты, примерно прикинули, сколько будут забирать энергии остальные комплектующие, просуммировав их несчастные крохи. Сложив эти данные, вы получаете максимальный уровень энергопотребления вашего системного блока. Теперь берем эту цифру и для запаса накидываем еще 20-30% сверху, чтобы в нагрузке ваш блок питания не пыхтел на пределе своих возможностей, а укладывался в пределы 40-80% от своей максимальной мощности.

Ассортимент блоков питания по назначению можно условно разделить на:

— малой мощности — от 200 до 400 Вт. Офисные «печатные машинки», домашние компьютеры, не оснащенные дискретной видеокартой.

— средней мощности — от 450 до 650 Вт. Игровые системные блоки с одной видеокартой.

— высокой мощности — от 700 Вт и выше для высокопроизводительных компьютеров с двумя и более видеокартами, многопроцессорных рабочих станций или файловых серверов.

Теперь, определившись с мощностью, попробуем настроить нашу выборку более «тонко». Каждый из диапазонов мощностей включает в себя несколько ценовых сегментов продукции, которая зависит от вспомогательных характеристик. Возьмем сегмент от 200 до 400. Есть среди них как дешевые модели, без лишних наворотов, есть и более дорогие с сертификатами 80+ Bronze, Silver или Gold.

Среди среднего сегмента от 450 до 650 Вт картина идентичная. Тут вам и недорогие модели и более продвинутые с «цветными» сертификатами, золотом, бронзой и т.д., с отстегивающимися кабелями или полупассивными системами охлаждения для любителей тишины (включая и полностью пассивные модели). Если у вас есть дополнительные средства, то лучше всего озаботиться о том, чтобы взять БП с нормальным сертификатом 80 PLUS, бесшумной системой охлаждения и возможностью отключать лишние кабели. Если вы решили сэкономить, то о комфорте и высокой надежности можно забыть.

Есть пользователи, которые любят брать блок питания «с запасом», но при этом ограничены в средствах. Не стоит гоняться за чрезмерной мощность, а взять более дорогой и менее мощный блок питания, но зато более надежный и «холодный», вместо излишне мощного, но дешевого продукта. К тому же, такие БП частенько грешат тем, что не выдают нужной мощности по 12 В линии. Помните, я в начале статьи об этом говорил? Можно даже столкнуться с тем, что недорогие БП с красивой и большой цифрой будет выдавать по 12 В меньше мощности, чем более дорогой собрат меньшей цифрой в модели.

Что касается мощных игровых компьютеров с несколькими видеокартами, или даже несколькими процессорами, то тут все намного проще. Практически все нормальные блоки в этом сегменте идут со съемными проводами, «цветным» 80 PLUS и честной мощностью по 12 В линии. Самые дорогие модели с сертификатами Platinum и Titanium построены на передовой в сфере импульсных блоков питания для ПК схемотехнике, имеют наилучшие электрические характеристики и выходные параметры.

Если вы любитель собрать компьютер на лучших комплектующих, и ваш кошелек достаточно толст, то такие БП определенно для вас. Вообще, в случае дорогих и элитных системных блоков с высоким энергопотреблением лучше не экономить на БП, т.к. некачественное питание может привести к весьма печальным последствиям.

Отдельно хотелось бы сказать пару слов о блоках питания БЕЗ сертификации 80 PLUS. Отсутствие сертификата, это не всегда «приговор». Некоторые производители просто не считают нужным тратить лишние деньги на сертификацию в некоторых моделях, хотя технически из блоки питания вполне соответствуют 80 PLUS, поэтому бояться покупки таких БП не стоит, особенно если они от именитых производителей и по цене идут примерно наравне с сертифицированными моделями.

О разъемах и кабелях

С разъемами все намного проще. У вас есть материнская плата, видеокарта (две и больше) и определенное количество SATA накопителей и приводов. Подобрав БП по мощности, вам всего лишь нужно убедиться, что выбранный вами продукт оснащен необходимым количеством разъемов. Для многопроцессорных конфигураций, нужны БП с двумя коннекторами 8 pin, для нескольких видеокарт стоит озаботиться, чтобы у БП было не менее четырех 6+2 pin разъемов. Чтобы не столкнуться с нехваткой разъемов для накопителей, выбирайте БП с хотя бы четырьмя SATA разъемами.

При подборе БП стоит обратить внимание и на длину кабелей, основного ATX24 pin и кабеля питания CPU при установки в корпус с нижним расположением блока питания.

Для оптимальной прокладки питающих проводов за задней стенкой, они должны быть длиной как минимум от 60-65 см, в зависимости от размеров корпуса. Обязательно учтите этот момент, чтобы потом не возиться с удлинителями.

На количество MOLEX нужно обращаться внимание только если вы ищете замену для своего старого и допотопного системного блока с IDE накопителями и приводами, да еще и в солидном количестве, ведь даже у самых простых БП есть минимум пара-тройка стареньких MOLEX, а в более дорогих моделях их вообще десятки.

Надеюсь этот небольшой путеводитель по каталогу компании DNS поможет вам в столь сложном вопросе на начальном этапе вашего знакомства с блоками питания. Удачных покупок!

Лабораторный источник постоянного напряжения из блока питания / Habr

Несколько недель назад мне для некого опыта потребовался источник постоянного напряжения 7V и силой тока в 5A. Тут-же отправился на поиски нужного БП в подсобку, но такого там не нашлось. Спустя пару минут я вспомнил о том, что под руки в подсобке попадался блок питания компьютера, а ведь это идеальный вариант! Пораскинув мозгами собрал в кучу идеи и уже через 10 минут процесс начался.

Для изготовления лабораторного источника постоянного напряжения потребуется:
— блок питания от компьютера
— клеммная колодка
— светодиод
— резистор ~150 Ом
— тумблер
— термоусадка
— стяжки

Блок питания, возможно, найдётся где-то не нужный. В случае целевого приобретения — от $10. Дешевле я не видел. Остальные пункты этого списка копеечные и не дефицитные.

Из инструментов понадобится:
— клеевой пистолет a.k.a. горячий клей (для монтажа светодиода)

— паяльник и сопутствующие материалы (олово, флюс…)
— дрель
— сверло диаметром 5мм
— отвертки
— бокорезы (кусачки)

Изготовление

Итак, первое, что я сделал — проверил работоспособность этого БП. Устройство оказалось исправным. Сразу можно отрезать штекера, оставив 10-15 см на стороне штекера, т.к. он вам может пригодиться. Стоит заметить, что нужно рассчитать длину провода внутри БП так, чтобы его хватило до клемм без натяжки, но и чтобы он не занимал всё свободное пространство внутри БП.

Теперь необходимо разделить все провода. Для их идентификации можно взглянуть на плату, а точнее на площадки, к которым они идут. Площадки должны быть подписаны. Вообще есть общепринятая схема цветовой маркировки, но производитель вашего БП, возможно, окрасил провода иначе. Чтобы избежать «непоняток» лучше самостоятельно идентифицировать провода.

Вот моя «проводная гамма». Она, если я не ошибаюсь, и есть стандартной.

С жёлтого по синий, думаю, ясно. Что означают два нижних цвета?
PG (сокр. от «power good«) — провод, который мы используем для установки светодиода-индикатора. Напряжение — 5В.
ON — провод, который необходимо замкнуть с GND для включения блока питания.

В блоке питания есть провода, которые я здесь не описывал. Например, фиолетовый +5VSB. Этот провод мы использовать не будем, т.к. граница силы тока для него — 1А.

Пока провода нам не мешают, нужно просверлить отверстие для светодиода и сделать наклейку с необходимой информацией. Саму информацию можно найти на заводской наклейке, которая находится на одной из сторон БП. При сверлении нужно позаботиться о том, чтобы металлическая стружка не попала вовнутрь устройства, т.к. это может привести к крайне негативным последствиям.

На переднюю панель БП я решил установить клеммную колодку. Дома нашлась колодка на 6 клемм, которая меня устроила.

Мне повезло, т.к. прорези в БП и отверстия для монтажа колодки совпали, да еще и диаметр подошел. Иначе, необходимо либо рассверливать прорези БП, либо сверлить новые отверстия в БП.

Колодка установлена, теперь можно выводить провода, снимать изоляцию, скручивать и лудить. Я выводил по 3-4 провода каждого цвета, кроме белого (-5V) и синего (-12V), т.к. их в БП по одному.


Первый залужен — вывел следующий.


Все провода залужены. Можно зажимать в клемме.

Устанавливаем светодиод

Я взял обычный зелёный индикационный светодиод обычный красный индикационный светодиод (он, как выяснилось, несколько ярче). На анод (длинная ножка, менее массивная часть в головке светодиода) припаиваем серый провод (PG), на который предварительно насаживаем термоусадку. На катод (короткая ножка, более массивная часть в головке светодиода) припаиваем сначала резистор на 120-150 Ом, а к второму выводу резистора припаиваем черный провод (GND), на который тоже не забываем предварительно надеть термоусадку. Когда всё припаяно, надвигаем термоусадку на выводы светодиода и нагреваем ее.


Получается вот такая вещь. Правда, я немного перегрел термоусадку, но это не страшно.

Теперь устанавливаю светодиод в отверстие, которое я просверлил еще в самом начале.

Заливаю горячим клеем. Если его нет, то можно заменить супер-клеем.

Выключатель блока питания

Выключатель я решил установить на место, где раньше у блока питания выходили провода наружу.


Измерял диаметр отверстия и побежал искать подходящий тумблер.


Немного покопался, и нашел идеальный выключатель. За счёт разницы в 0,22мм он отлично встал на место. Теперь к тумблеру осталось припаять ON и GND, после чего установить в корпус.

Основная работа сделана. Осталось навести марафет.


Хвосты проводов, которые не использованы нужно изолировать. Я это сделал термоусадкой. Провода одного цвета лучше изолировать вместе.


Все шнурки аккуратно размещаем внутри.


Прикручиваем крышку, включаем, бинго!

Этим блоком питания можно получить много разных напряжений, пользуясь разностью потенциалов. Учтите, что такой приём не прокатит для некоторых устройств.
Вот тот спектр напряжений, которые можно получить.
В скобках первым идёт положительный, вторым — отрицательный.
24.0V — (12V и -12V)
17.0V — (12V и -5V)
15.3V — (3.3V и -12V)
12.0V — (12V и 0V)
10.0V — (5V и -5V)
8.7V — (12V и 3.3V)
8.3V — (3.3V и -5V)
7.0V — (12V и 5V)
5.0V — (5V и 0V)
3.3V — (3.3V и 0V)
1.7V — (5V и 3.3V)
-1.7V — (3.3V и 5V)
-3.3V — (0V и 3.3V)
-5.0V — (0V и 5V)
-7.0V — (5V и 12V)
-8.7V — (3.3V и 12V)
-8.3V — (-5V и 3.3V)
-10.0V — (-5V и 5V)
-12.0V — (0V и 12V)
-15.3V — (-12V и 3.3V)
-17.0V — (-12V и 5V)
-24.0V — (-12V и 12V)




Вот так мы получили источник постоянного напряжения с защитой от КЗ и прочими плюшками.

Рационализаторские идеи:
— использовать самозажимные колодки, как предложили тут, либо использовать клеммы с изолированными барашками, чтобы не хватать в руки отвёртку лишний раз.

Напряжения с компьютерного блока питания. Разъемы, мощность

Сегодня не редко можно увидеть, как люди выбрасывают компьютерные блоки питания. Ну или БП просто валяются без дела, собирая пыль.

А ведь их можно использовать в хозяйстве! В этой статье я расскажу, какие напряжения можно получить на выходе обычного компьютерного блока питания.

Небольшой ликбез о напряжениях и токах компьютерного БП

Во-первых, не стоит пренебрегать техникой безопасности.

Если на выходе блока питания мы имеем дело с безопасными для здоровья напряжениями, то вот на входе и внутри него 220 и 110 Вольт! Поэтому, соблюдайте технику безопасности. И позаботьтесь о том, чтобы никто другой не пострадал от экспериментов!

Во-вторых, нам потребуется Вольтметр или мультиметр. С помощью него можно измерить напряжения и определить полярность напряжения (найти плюс и минус).

В-третьих, на блоке питания вы можете найти наклейку, на которой будет обозначен максимальный ток, на который рассчитан блок питания, по каждому напряжению.

На всякий случай отнимите от написанной цифры 10%. Так вы получите наиболее точное значение (производители часто врут).

В-четвертых, блок питания ПК типа АТХ предназначен для формирования постоянных питающих напряжений +3.3V, +5V, +12V, -5V, -12V. Поэтому не пытайтесь получить на выходе переменное напряжение.Мы же расширим набор напряжений путем комбинирования номинальных.

Ну что, усвоили? Тогда продолжаем. Пора определиться с разъемами и напряжениями на их контактах.


Разъемы и напряжения компьютерного блока питания

Цветовая маркировка напряжений компьютерного блока питания

Как вы могли заметить, провода, выходящие из блока питания, имеют свой цвет. Это не просто так. Каждый цвет обозначает напряжение. Большинство производителей стараются придерживаться одного стандарта, но бывают совсем китайские блоки питания и цвет может не совпадать (именно поэтому мультиметр в помощь).

В нормальных БП маркировка по цветам проводов такая:
  • Черный — общий провод, «земля», GND
  • Белый — минус 5V
  • Синий — минус 12V
  • Желтый — плюс 12V
  • Красный — плюс 5V
  • Оранжевый — плюс 3.3V
  • Зеленый — включение (PS-ON)
  • Серый — POWER-OK (POWERGOOD)
  • Фиолетовый — 5VSB (дежурного питания).

Распиновка разъемов блока питания AT и ATX

Для вашего удобства я подобрал ряд картинок с распиновкой всех типов разъемов блока питания на сегодняшний день.

Для начала изучим типы и виды разъемов (коннекторов) стандартного блока питания.

Для «запитки» материнской платы используется разъем ATX с 24 контактами или разъем AT с 20-ю контактами. Он же используется для включения блока питания.

Для жестких дисков, сидиромов, картридеров и прочего используется MOLEX.

Большая редкость сегодня разъем для flopy — дисков. Но на старых БП можно встретить.

Для питания процессора используется 4-контактный разъем CPU. Их бывает два или еще сдвоеный, то есть 8-контактный, для мощных процессоров.

Разъем SATA — пришел на смену разъема MOLEX. Используется для тех же целей, что и MOLEX, но на более новых устройствах.

Разъемы PCI, чаще всего служат для подачи дополнительного питания на разного рода PCI express устройства (наиболее распространены для видеокарт).

Перейдем непосредственно к распиновке и маркировке. Где же наши заветные напряжения? А вот они!

Еще одна картинка с распиновкой и цветовым обозначением напряжений на разъемах БП.

Ниже приведена распиновка блока питания типа AT.

Ну вот. С распиновкой компьютерных блоков питания разобрались! Самое время перейти к тому, как получить необходимые напряжения из блока питания.

Получение напряжений с разъемов компьютерного блока питания

Теперь, когда мы знаем, где взять напряжения, воспользуемся таблицей, которую я привел ниже. Пользоваться ей надо следующим образом: положительное напряжение+ ноль= итого.

 положительное ноль итого (разность)
 +12В  +12В
 +5В -5В +10В
 +12В +3,3В +8,7В
 +3,3В -5В +8,3В
 +12В  +5В +7В
 +5В 0В +5В
 +3,3В  +3,3В
 +5В +3,3В +1,7В
 0В 0В 

Важно помнить, что ток итогового напряжения будет определяться минимальным значением по использованным номиналам для его получения.

Я рекомендую на протяжении всей работы проверять результат мультиметром. Так спокойнее.

Также не забывайте, что для больших токов желательно использовать толстый провод.

Самое главное!!! Блок питания запускается замыканием проводов GND и PWR SW. Работает до тех пор, пока данные цепи замкнуты!

 ПОМНИТЕ! Любые эксперименты с электричеством необходимо проводить со строгим соблюдением правил электробезопасности!!!

Дополнение по разъемам. Уточнение распиновки PCIe и EPS разъемов.

PCIe и EPS

 

Революция в схемах компьютерных блоков питания полувековой давности / Habr

Полвека назад улучшенные транзисторы и импульсные стабилизаторы напряжения произвели революцию в схемах компьютерных блоков питания. Получила преимущества, к примеру, компания Apple – хотя не она запустила эту революцию, несмотря на заявления Стива Джобса.



Без Intel внутри: на рентгене видны компоненты импульсного блока питания, использованного в оригинальном микрокомпьютере Apple II, вышедшем в 1977 году

Компьютерным блокам питания не уделяется должного внимания.

Как энтузиаст технологий, вы наверняка знаете, какой у вашего компьютера микропроцессор и сколько у него физической памяти, однако есть вероятность, что вам ничего не известно о его блоке питания. Не тушуйтесь – даже производители разрабатывают БП в последнюю очередь.

А жаль, поскольку на создание БП для персональных компьютеров ушло довольно много сил, и это было серьёзное улучшение по сравнению с теми схемами, что питали другую потребительскую электронику вплоть до конца 1970-х. Этот прорыв стал возможен благодаря огромным скачкам в полупроводниковой технологии, сделанным полвека назад, в частности, улучшениям в импульсных стабилизаторах напряжения и инновациям в интегральных схемах. Но при этом данная революция прошла мимо внимания общественности, и даже неизвестна многим людям, знакомым с историей микрокомпьютеров.

В мире БП не обошлось без выдающихся чемпионов, включая и личность, упоминание которой может вас удивить: Стива Джобса. Согласно его авторизованному биографу, Уолтеру Айзексону, Джобс очень серьёзно относился к БП передового персонального компьютера Apple II и его разработчику, Роду Холту. Джобс, как утверждает Айзексон, заявлял следующее:

Вместо обычного линейного БП, Холт создал такой, который использовался в осциллографах. Он включал и выключал энергию не 60 раз в секунду, а тысячи раз; это позволяло ему сохранять энергию на гораздо меньших промежутках времени, в результате чего он испускал гораздо меньше тепла. «Этот импульсный БП был таким же революционным, как логическая плата Apple II, — сказал позже Джобс. – Рода не часто хвалят за это в книжках по истории, а должны были бы. Сегодня все компьютеры используют ИБП, и все они скопированы со схемы Рода Холта».

Это серьёзное заявление показалось мне не слишком достоверным, и я провёл своё расследование. Я обнаружил, что, хотя ИБП и были революционными, эта революция произошла в конце 1960-х и середине 1970-х, когда ИБП приняли эстафету у простых, но неэффективных линейных БП. Apple II, появившийся в 1977, получил преимущества этой революции, но не вызывал её.

Исправление джобсовской версии событий – не какая-то мелочь из инженерной области. Сегодня ИБП представляют собой повсеместный оплот всего, мы используем их ежедневно для зарядка наших смартфонов, планшетов, ноутбуков, камер и даже некоторых автомобилей. Они питают часы, радио, домашние аудиоусилители, и другую мелкую бытовую технику. Спровоцировавшие эту революцию инженеры заслуживают признания своих заслуг. Да и вообще, это весьма интересная история.

БП в настольных компьютерах, таких, как Apple II, преобразует переменный линейный ток в постоянный ток, и выдаёт очень стабильное напряжение для питания системы. БП можно сконструировать множеством разных способов, но чаще всего встречаются линейные и импульсные схемы.

Со всеми бородавками


В прошлом небольшие электронные устройства обычно использовали громоздкие БП-трансформаторы, получившие уничижительное прозвище «стенные бородавки». В начале XXI века технологические улучшения позволили начать практическое применение компактных импульсных источников питания малой энергии для питания небольших устройств. С падением стоимости импульсных AC/DC адаптеров они быстро заменили собой громоздкие БП у большинства домашних устройств.

Apple превратила зарядник в хитроумное устройство, представила прилизанную зарядку для iPod в 2001 году, внутри которой был компактный обратноходовой преобразователь под управлением интегральных схем (слева на картинке). Вскоре получили широкое распространение USB-зарядки, а ультракомпактный зарядник в виде дюймового куба от Apple, появившись в 2008, стал культовым (справа).

Самые модные зарядники высокого уровня подобного типа сегодня используют полупроводники на основе нитрида галлия, способные переключаться быстрее кремниевых транзисторов, и потому более эффективные. Развивая технологии в другом направлении, сегодня производители предлагают USB-зарядки уже по цене меньше доллара, хотя и экономя при этом на качестве питания и системах безопасности.

* * *

Типичный линейный БП использует громоздкий трансформатор для преобразования высоковольтного AC в розетке в низковольтный AC, который затем превращается в низковольтный DC при помощи диодов, обычно четырёх штук, подключенных в классическую схему диодного моста. Для сглаживания выходного напряжения диодного моста применяются крупные электролитические конденсаторы. Компьютерные БП используют схему под названием линейный стабилизатор, уменьшающую напряжение DC до нужного уровня и удерживающую его на этом уровне даже при изменениях в нагрузке.

Линейные БП тривиальны в проектировании и создании. Они используют дешёвые низковольтные полупроводниковые компоненты. Однако у них есть два больших минуса. Один – необходимость в использовании крупных конденсаторов и громоздких трансформаторов, которые никак нельзя запихнуть в нечто столь маленькоё, лёгкое и удобное, как зарядники, которые мы все используем для наших смартфонов и планшетов. Другой – схема линейного стабилизатора, основанная на транзисторах, превращает излишнее напряжение DC – всё, что выше необходимого уровня – в паразитное тепло. Поэтому такие БП обычно теряют более половины потребляемой энергии. И им часто требуются крупные металлические радиаторы или вентиляторы, чтобы избавляться от этого тепла.

ИБП работает на другом принципе: линейный вход AV превращается в высоковольтный DC, который включается и выключается десятки тысяч раз в секунду. Высокие частоты позволяют использовать гораздо более мелкие и лёгкие трансформаторы и конденсаторы. Особая схема точно управляет переключениями для контроля выходного напряжения. Поскольку таким БП не нужны линейные стабилизаторы, они теряют очень мало энергии: обычно их эффективность достигает 80-90%, и в итоге они гораздо меньше греются.

Однако ИБП обычно гораздо более сложные, чем линейные, и их сложнее проектировать. Кроме того, они выдвигают больше требований к компонентам, и нуждаются в высоковольтных транзисторах, способных эффективно включаться и выключаться с высокой частотой.

Должен упомянуть, что некоторые компьютеры использовали БП, не являвшиеся ни линейными, ни импульсными. Одной грубой, но эффективной техникой было запитать мотор от розетки и использовать его для раскрутки генератора, выдававшего необходимое напряжение. Мотор-генераторы использовались несколько десятилетий, по меньшей мере, с момента появления машин от IBM с перфокартами в 1930-х и до 1970-х, питая, среди прочего, суперкомпьютеры Cray.

Ещё один вариант, популярный с 1950-х и вплоть до 1980-х, использовал феррорезонансные трансформаторы – особый тип трансформаторов, дающих на выходе постоянное напряжение. Также в 1950-х для регулирования напряжения ламповых компьютеров использовался дроссель насыщения, контролируемая катушка индуктивности. В некоторых современных БП для ПК он вновь появился под именем «магнитного усилителя», давая дополнительное регулирование. Но в итоге все эти старые подходы уступили место ИБП.

Принципы, лежащие в основе ИБП, известны инженерам-электрикам с 1930-х, однако эта технология редко использовалась в эру электронных ламп. В то время в некоторых БП использовались специальные ртутные лампы, тиратроны, и их можно считать примитивными, низкочастотными импульсными стабилизаторами. Среди них — REC-30, питавшая телетайп в 1940-х, а также блок питания компьютера IBM 704 от 1954 года. Но с появлением в 1950-х силовых транзисторов ИБП начали быстро улучшаться. Pioneer Magnetics начала производить ИБП в 1958. General Electric выпустила ранний проект транзисторного ИБП в 1959.

В 1960-е НАСА и аэрокосмическая индустрия стала основной движущей силой в развитии ИБП, поскольку для аэрокосмических нужд преимущества малого размера и высокой эффективности имели приоритет перед большой стоимостью. К примеру, в 1962-м спутник Telstar (первый спутник, начавший передачу телевидения) и ракета «Минитмен» использовали ИБП. Годы шли, цены пали, и ИБП начали встраивать в потребительскую технику. К примеру, в 1966 Tektronix использовала ИБП в портативном осциллографе, что позволяло ему работать как от розетки, так и от батареек.

Тенденция ускорялась по мере того, как производители начали продавать ИБП другим компаниям. В 1967 RO Associates представила первый ИБП на 20 КГц, который назвала первым коммерчески успешным примером ИБП. Nippon Electronic Memory Industry Co. начала разработку стандартизованных ИБП в Японии в 1970. К 1972 году большинство производителей БП продавали ИБП или готовились к их выпуску.

Примерно в это время индустрия компьютеров начала использовать ИБП. Среди ранних примеров – микрокомпьютер PDP-11/20 от Digital Equipment 1969 года, и микрокомпьютер 2100A от Hewlett-Packard 1971 года. В публикации 1971 года заявлялось, что среди компаний, использующих ИБП, отметились все главные игроки рынка: IBM, Honeywell, Univac, DEC, Burroughs и RCA. В 1974 в списке микрокомпьютеров, использующих ИБП, отметились Nova 2/4 от Data General, 960B от Texas Instruments и системы от Interdata. В 1975 ИБП использовались в терминале HP2640A, похожем на пишущую машинку Selectric Composer от IBM, и в портативном компьютере IBM 5100. К 1976 году Data General использовала ИБП в половине своих систем, а HP – в мелких системах типа 9825A Desktop Computer и 9815A Calculator. ИБП начали появляться и в домашних устройствах, например, в некоторых цветных телевизорах к 1973 году.

ИБП часто освещались в электронных журналах той эпохи, как в виде рекламы, так и в статьях. Ещё в 1964 году Electronic Design рекомендовал использовать ИБП из-за более высокой эффективности. На обложке от октября 1971 года журнала Electronics World красовался ИБП на 500 Вт, а название статьи гласило: «Блок питания с импульсным стабилизатором». Computer Design в 1972 детально описывал ИБП и постепенный захват ими компьютерного рынка, хотя упомянул и о скептицизме некоторых компаний. На обложке Electronic Design 1976 года было написано «Переключаться внезапно стало легче», и описывалась новая интегральная схема управления ИБП. В журнале Electronics была длинная статья на эту тему; в Powertec были двухстраничные рекламные материалы о преимуществах ИБП со слоганом «The big switch is to switchers» [большие изменения для переключателей]; Byte объявлял о выпуске ИБП для микрокомпьютеров компанией Boschert.

Роберт Бошерт, уволившийся с работы и начавший собирать БП у себя на кухне в 1970-м, был ключевым разработчиком этой технологии. Он концентрировался на упрощении схем, чтобы сделать импульсные БП конкурентными по цене с линейными, и к 1974 году уже выпускал недорогие БП для принтеров в промышленных количествах, а потом в 1976 выпустил и недорогие ИБП на 80 Вт. К 1977 Boschert Inc. выросла до компании из 650 человек. Она делала БП для спутников и истребителя Grumman F-14, а позже – компьютерные БП для HP и Sun.

Появление недорогих высоковольтных высокочастотных транзисторов в конце 1960-х и начале 1970-х, выпускаемых такими компаниями, как Solid State Products Inc. (SSPI), Siemens Edison Swan (SES) и Motorola, помогло вывести ИБП в мейнстрим. Более высокие частоты переключения повышали эффективность, поскольку тепло в таких транзисторах рассеивалось в основном в момент переключения между состояниями, и чем быстрее устройство могло совершать этот переход, тем меньше энергии оно тратило.

Частоты транзисторов в то время увеличивались скачкообразно. Транзисторная технология развивалась так быстро, что редакторы Electronics World в 1971 могли заявлять, что БП на 500 Вт, представленный на обложке журнала, невозможно было произвести всего на 18 месяцев ранее.

Ещё один заметный прорыв случился в 1976, когда Роберт Маммано, сооснователь Silicon General Semiconductors, представил первую интегральную схему для контроля ИБП, разработанную для электронного телетайпа. Его контроллер SG1524 кардинально упростил разработку БП и уменьшил их стоимость, что вызвало всплеск продаж.

К 1974 году, плюс-минус пару лет, каждому человеку, хотя бы примерно представлявшему себе состояние индустрии электроники, было ясно, что происходит реальная революция в конструкциях БП.


Лидеры и последователи: Стив Джобс демонстрирует персональный компьютер Apple II в 1981 году. Впервые представленный в 1977, Apple II выиграл от промышленного сдвига от громоздких линейных БП к небольшим и эффективным импульсным. Но Apple II не запустил этот переход, как позже утверждал Джобс.

Персональный компьютер Apple II представили в 1977. Одной из его особенностью был компактный ИБП без вентилятора, дававший 38 Вт мощности и напряжение в 5, 12, –5, и –12 В. Он использовал простую схему Холта, ИБП с топологией обратноходового офлайнового преобразователя. Джобс заявил, что сегодня каждый компьютер копирует революционную схему Холта. Но была ли эта схема революционной в 1977? И скопировал ли её каждый производитель компьютеров?

Нет и нет. Похожие обратноходовые преобразователи в то время уже продавали Boschert и другие компании. Холт получил патенты на парочку особенностей своего БП, но их так и не стали широко использовать. А создание управляющей схемы из дискретных компонентов, как сделали для Apple II, оказалось технологическим тупиком. Будущее ИБП принадлежало специализированным интегральным схемам.

Если и был микрокомпьютер, оказавший долгосрочное влияние на проектирование БП, это был IBM Personal Computer, запущенный в 1981. К тому времени, всего через четыре года после выхода Apple II, технология БП серьёзно изменилась. И хотя оба этих ПК использовали ИБП с топологией обратноходового офлайнового преобразователя и несколькими выходами, это и всё, что между ними было общего. Контуры питания, управления, обратной связи и стабилизации были разными. И хотя БП для IBM PC использовал контроллер на интегральной схеме, в нём было почти в два раза больше компонентов, чем в БП от Apple II. Дополнительные компоненты давали дополнительную стабилизацию выходного напряжения и сигнал «качественное питание», когда все четыре напряжения были верными.

В 1984 году IBM выпустила значительно обновлённую версию ПК, под названием IBM Personal Computer AT. Его БП использовал множество новых схем, полностью отказавшись от обратноходовой топологии. Он быстро стал стандартом де факто и оставался таковым до 1995 года, когда Intel представила форм-фактор ATX, который, как и другие вещи, определившие БП ATX, по сей день остаётся стандартом.

Но, несмотря на появление стандарта ATX, компьютерные системы питания стали сложнее в 1995 году, когда появился Pentium Pro – микропроцессор, требовавший меньшего напряжения и больших токов, чем БП ATX мог дать напрямую. Для такого питания Intel представил модуль регулирования напряжения (VRM) – импульсный преобразователь DC-DC, устанавливаемый рядом с процессором. Он уменьшал 5 В от БП до 3 В, используемых процессором. В графических картах многих компьютеров тоже есть VRM, питающий установленные в них высокоскоростные графические чипы.

Сегодня быстрому процессору от VRM может требоваться целых 130 Вт – что гораздо больше, чем полватта мощности, которые использовал процессор Apple II, 6502. Современный процессор в одиночку может использовать в три раза больше мощности, чем целый компьютер Apple II.

Растущее потребление энергии компьютерами стало причиной беспокойства, связанной с окружающей средой, в результате чего появились инициативы и законы, требующие более эффективных БП. В США правительственный сертификат Energy Star и промышленный 80 Plus требуют от производителей выдавать более «зелёные» БП. Им удаётся это сделать при помощи различных технологий: более эффективного энергопотребления в режиме ожидания, более эффективных стартовых схем, резонансных схем, уменьшающих потери питания в импульсных транзисторах, схемы типа active clamp, заменяющие импульсные диоды более эффективными транзисторами. Улучшения в технологиях силовых транзисторов MOSFET и высоковольтных кремниевых выпрямителей, произошедшие в последние десять лет, также послужили увеличению эффективности.

Технология ИБП продолжает развиваться и другими путями. Сегодня, вместо аналоговых схем, многие поставщики используют цифровые чипы и программные алгоритмы, контролирующие выход. Разработка контроллера БП стала как вопросом проектирования железа, так и вопросом программирования. Цифровое управление питанием позволяет поставщикам общаться с остальной системой с большей эффективностью и вести логи. И хотя эти цифровые технологии по большей части используются в серверах, они начинают влиять на разработку настольных ПК.

Сложно увязать всю эту историю с мнением Джобса о том, что Холт должен быть известен шире, или что «Рода не часто хвалят за это в книжках по истории, а должны были бы». Даже самые лучшие разработчики БП не становятся известными за пределами крохотного сообщества. В 2009 году редакторы Electronic Design пригласили Бошерта в свой «Инженерный зал славы». Роберт Маммано получил награду «достижения всей жизни» в 2005 году от редакторов Power Electronics Technology. Руди Севернс получил другую такую награду в 2008 году за инновации в ИБП. Но никто из этих светил в области проектирования БП даже не отмечен в Википедии.

Часто повторяемое мнение Джобса о том, что Холта незаслуженно не заметили, привело к тому, что работу Холта описывают в десятках популярных статей и книжек про Apple, от «Реванша нердов» Пола Киотти, появившейся в журнале California в 1982, до биографии Джобса, бестселлера за авторством Айзексона, вышедшего в 2011. Так что весьма иронично, что, хотя его работа над Apple II вовсе не была революционной, Род Холт, вероятно, стал самым известным разработчиком БП всех времён.

Как включить компьютерный блок питания без компьютера

Электрический провод в руках с разрядом тока

Все компьютерные компоненты предназначены для работы в связке друг с другом, но есть один элемент системы, который в некотором роде самодостаточный и может работать сам по себе. Речь идет о блоке питания компьютера. Действительно, не смотря на то, что его проектируют для совместной работы с другими комплектующими компьютера, их наличие вовсе не является обязательным для его работы в отличии, например от видеокарты.

С другой стороны возникает вопрос, а зачем вообще включать компьютерный блок питания без подсоединения к компьютеру. Есть две основные причины. Во первых, чтобы проверить его работоспособность. Допустим, вы нажимаете на кнопку включения на корпусе компьютера, а он не включается. Самое простое, что можно сделать в такой ситуации, убедиться в работоспособности блока питания. Так же можно проверить выдаваемые напряжения под нагрузкой, если есть сбои в работе компьютера и подозрение падает на блок питания.

Во вторых, его можно использовать как мощный универсальный источник питания с разными напряжениями. Таким образом, старому блоку питания компьютера можно найти новое применение.

Зачем нам может понадобиться запустить компьютерный блок питания без помощи компьютера мы разобрались, осталось выяснить, как это сделать. Кажется логичным просто включить его в электрическую розетку. Мысль конечно верная, но этого недостаточно, он не заработает, поскольку управляется материнской платой компьютера.

Значит, нам нужно сымитировать команды от материнки, благо делается это элементарно. Для этого нам потребуется кусочек провода или кусочек гибкого металла, например канцелярская скрепка. Наша задача замкнуть два контакта в колодке, которая подает питание на материнку. Это и будет для блока питания компьютера командой на запуск.

Берем разъем для питания материнской платы и замыкаем зеленый провод (PS_ON) с любым проводом черного цвета (COM) с помощью перемычки. Штекер бывает в двух вариантах: 20-ти контактный (старый стандарт) и  24-х контактный (бывает разборным 20+4). В данном случае это не на что не влияет, однако в блоках питания от неизвестных производителей цвета проводов могут оказаться перепутанными. Поэтому рекомендуем на всякий случай свериться со схемой ниже, чтобы случайно не замкнуть что-нибудь другое.

схема распиновки

Нужно отметить, что компьютерные блоки питания не любят работать без нагрузки, поэтому рекомендуется всегда подключать какого-нибудь потребителя. Проще всего взять кулер, ненужный винчестер или лампочку соответствующего напряжения и мощности. Подключаем к блоку питания нагрузку, в данном случае корпусной кулер и кусочком красного провода с зачищенными концами соединяем зеленый и соседний черный провода.

пример запуска блока питания

Теперь если включить блок питания в розетку, то он сразу заработает. Чтобы отключить блок питания можно не выключать его из розетки, а просто разомкнуть сделанную нами перемычку. Тем людям, кто собирается использовать блок питания компьютера в качестве отдельного источника питания, рекомендуется обеспечить надежный контакт в колодке с помощью пайки, ответной колодки или иным способом. Так же для повышения удобства использования в перемычку можно встроить кнопку, которая будет управлять включением и выключением блока питания.

 

2 способа как запустить блок питания без компьютера

блок питания без компьютера

Часто ли вам приходилось сталкиваться с вопросом, как запустить блок питания без компьютера? Вряд ли, если только вы не занимаетесь ремонтом компьютеров на профессиональном уровне. А между тем ответ на него должен знать каждый уважающий себя пользователь, ведь проверка блока питания — это первое, что нужно сделать при поломке ПК.

Зачем это делается? Всё просто, когда компьютер ломается, велика вероятность того, что причина кроется именно в блоке питания. Причём даже если сам блок вроде бы работает, вентилятор крутится и горят лампочки индикаторов, это вовсе не означает, что он исправен. Это лишь говорит о том, что ток поступает в блок питания, но не о том, что он из него выходит.

Чтобы понять так ли это, нужно проверить напряжение на его выходах. Делать это, пока блок подключен к компьютеру, крайне неудобно и опасно, ведь частые включения могут отрицательно сказаться на операционной системе вашего ПК. Кроме того, всегда есть вероятность того, что неисправный блок может полностью перегореть, попутно испортив ещё и другие составляющие ПК. Если это случится, то на ремонт вашего компьютера уйдёт немало денег, а потому куда безопаснее проверять блок питания отдельно от системы.

блок питания отдельно от системы

Как запустить блок питания без компьютера, старые и новые модели

Существует два способа, как запустить компьютерный блок питания без компьютера: напрямую и с использованием провода. По понятным причинам первый способ куда проще и понятнее, но работает он только для старых блоков питания стандарта AT. Новые же ATX блоки имеют контакт, который отвечает за их включение, и если его не задействовать, то включаться блок не будет.

Давайте же разберёмся, как его задействовать. Для этого вам понадобится небольшой проводок, проволока или что-то, чем можно соединить два контакта.

  1. Для начала нам нужно найти 20-pin разъём, в котором и содержится заветный контакт. Обычно он зелёного цвета и находится на четвёртой позиции слева, если считать от фиксатора крепления. Некоторые производители позволяют себе отойти от общепринятых норм и делают провода другого цвета, а потому в спорной ситуации опираться лучше на позицию контакта, а не на его цвет.
  2. После этого вам нужно заземлить ваш проводок, для этого подключите его к соседнему контакту справа. Если вы всё сделали правильно, блок питания должен тут же заработать.
  3. После остаётся лишь измерить напряжение и мощность.

заземлить провод

Нормальной для ATX блоков считается мощность от 250 до 350 Вт. Напряжение же может быть разное 3, 5 и 15 В. Если у вас они не такие, то проблема явно в блоке питания.

Как отличить ATX блок от AT стандарта?

Если вы не хотите зря мучатся с соединением контактов и с тем, как запустить блок питания без компьютера, то лучше сразу узнать, блок какого стандарта установлен в вашем ПК. Существует два простых способа сделать это.

Первый — посмотреть на бумажку, приклеенную к одной из стенок блока питания. Там в самой верхней строке будет написан номер модели вашего блока. Номер будет начинаться либо с букв ATX либо с AT, по которым и можно понять стандарт вашей модели блока.

Второй — посмотреть на его материнскую плату. Блоки питания стандарта AT имели материнские платы гладкой формы, к которым было подсоединено шесть проводов.

В то время как материнская плата ATX стандарта по форме больше напоминает губную гармошку и к ней ведут около двадцати проводов.

Также стоит упомянуть о том, что какое-то время производились модели, которые совмещают в себе оба стандарта, а потому имеют две различные материнские платы.

Что делать, если блок питания не включается?

Первое, что нужно сделать, если у вас не запускается блок питания — это проверить наличие питания на входе, оно должно быть равно около 220 В, возможно у вас просто повреждён кабель или неисправна розетка.

Если всё в порядке, то даже если компьютер выключен, напряжение на выходе будет составлять как минимум 5 В. Проверить это можно, подключив тестер к девятому контакту, который обычно фиолетового цвета.

тестер

Если вы проверили всё, но компьютер по-прежнему не включается, то существует три наиболее распространённые неполадки:

  1. Обрыв цепи в кнопке включения (проверить можно, запустив блок питания вне системы).
  2. Короткое замыкание на выходе (чтобы проверить, попробуйте на время отключить все устройства и адаптеры от ПК, после чего перезапустите компьютер).
  3. Неисправная материнская плата (крайне редкий случай поломки, чтобы проверить, также запустите блок, отключив его от ПК, если блок работает — проблема в материнской плате).

Если ни один из данных методов не помог вам запустить ПК, то лучше всего будет обратиться к специалисту, так как дальнейшая диагностика требует определённых навыков от проверяющего.

Как видите, порой поломка компьютера случается из-за мелочей, которые достаточно просто обнаружить самостоятельно. А простое знание о том, как запустить блок питания без компьютера поможет сэкономить вам время и средства.

Похожие статьи:

Переделка компьютерного блока питания в разные устройства

Компьютер служит нам годами, становится настоящим другом семьи, и когда он устаревает или безнадёжно ломается, бывает так жалко нести его на свалку. Но существуют детали, которые могут ещё долго прослужить в быту. Это и

Переделка компьютерного блока питаниямногочисленные кулеры, и радиатор процессора, и даже сам корпус. Но самое ценное — это БП. Компьютерный блок питания, благодаря пристойной мощности при малых габаритах, является идеальным объектом всяческих модернизаций. Его трансформация — не такая уж сложная задача.

Переделка компьютерного блока питания в обычный источник напряжения

Нужно определиться какого типа блок питания вашего компьютера, АТ или АТХ. Как правило, это указывается на корпусе. Импульсные БП работают только под нагрузкой. Но устройство блока питания типа АТХ позволяет замыканием зелёного и чёрного проводов искусственно её имитировать. Итак, подключив нагрузку (для АТ) или замкнув необходимые выводы (для АТХ), можно запустить вентилятор. На выходе появляется 5 и 12 Вольт. Максимальный выходной ток зависит от мощности БП. При 200 Вт, на пятивольтовом выходе, ток может достигать порядка 20А, на 12В  — около 8А. Так без лишних затрат можно пользоваться хорошим источником питания с неплохими выходными характеристиками.

устройство блока питания

Переделка компьютерного блока питания в регулируемый источник напряжения

Иметь такой БП дома или на работе довольно удобно. Изменить стандартный блок несложно. Нужно заменить несколько сопротивлений и выпаять дроссель. При этом величину напряжения можно регулировать от 0 до 20 Вольт. Естественно, токи останутся в первоначальных пропорциях. Если же вас устраивает максимальное напряжение в 12В, достаточно на его выходе установить тиристорный регулятор напряжения. Схема регулятора очень проста. При этом он поможет избежать вмешательства во внутреннюю часть компьютерного блока.

Переделка компьютерного блока питания в зарядное устройство для автомобиля

Принцип мало чем отличается от регулируемого источника питания. Только желательно поменять диоды Шоттки на более мощные. Зарядное устройство из БП компьютера имеет ряд преимуществ и недостатков. К плюсам в первую очередь относят малые габариты и небольшой вес. Трансформаторное ЗУ намного тяжелее и неудобней в эксплуатации. Недостатки тоже существенны: критичность к коротким замыканиям и переполюсовке.

зарядное устройство из бп компьютера

Конечно, эта критичность наблюдается и в трансформаторных устройствах, но при выходе из строя импульсного блока переменный ток с напряжением 220В стремится к аккумулятору. Страшно представить последствия этого для всех приборов и находящихся рядом людей. Применение в блоках питания защит решает эту проблему.

Перед использованием такого зарядного устройства, серьёзно отнеситесь к изготовлению схемы защиты. Тем более что существует большое количество их разновидностей.

Итак, не спешите выбрасывать запчасти от старого девайса. Переделка компьютерного блока питания подарит ему вторую жизнь. При работе с БП помните, что его плата постоянно находится под напряжением 220В, а это представляет смертельную угрозу. Соблюдайте правила личной безопасности при работе с электрическим током.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *