Стабилизатор напряжения в режиме покоя – К сожалению, страница Wp-content Uploads Rumyantsev-a A -vsyo-o-stabilizatorah-napryazheniya_www Samelectric Ru_ Pdf не найдена…

Содержание

как работает, зачем нужен, типы и применение

В статье расскажем что такое стабилизатор напряжения, применение, как работает и его различные типы с принципиальными схемами, а также мы поможем вам в выборе стабилизатора напряжения.

Применение стабилизаторов напряжения стало необходимостью для каждого дома. Различные типы стабилизаторов напряжения доступны в настоящее время с различными функциями и работами. Последние достижения в технологии, такие как микропроцессорные чипы и силовые электронные устройства, изменили стабилизаторы напряжения. Теперь они полностью автоматические, интеллектуальные и оснащены множеством дополнительных функций. Они также имеют сверхбыструю реакцию на колебания напряжения и позволяют своим пользователям дистанционно регулировать требования к напряжению, включая функцию пуска или выключения. Большой выбор стабилизаторов напряжения вы можете посмотреть и приобрести на Алиэкспресс, выбирайте любой подходящий.

Что такое стабилизатор напряжения

Стабилизатор напряжения — это электрическое устройство, которое используется для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе, то есть входящего питания.

Основное назначение стабилизатора напряжения заключается в защите электрических или электронных устройств (например, кондиционера, холодильника, телевизора и так далее) от возможного повреждения в результате скачков напряжения или колебаний, повышенного или пониженного напряжения.


Рис.1 — Различные типы стабилизаторов напряжения

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним или офисным оборудованием, которое получает электропитание извне. Даже места, которые имеют свои собственные внутренние источники питания в виде дизельных генераторов переменного тока, сильно зависят от этих AVR для безопасности своего оборудования.

Мы можем увидеть различные типы стабилизаторов напряжения, доступных на рынке. Аналоговые и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и повышению осведомленности о безопасности устройств. Эти стабилизаторы напряжения могут быть однофазными (выход 220-230 вольт) или трехфазными (выход 380/400 вольт) в зависимости от типа применения. Регулирование желаемой стабилизированной мощности осуществляется методом понижения и повышения напряжения в соответствии с его внутренней схемой. Трехфазные стабилизаторы напряжения доступны в двух разных моделях, то есть моделях с сбалансированной нагрузкой и моделях с несбалансированной нагрузкой.

Они доступны в различных рейтингах и диапазонах
КВА. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с усилением 20-35 вольт при питании от входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что широкий диапазон стабилизатора напряжения может обеспечить стабилизированное напряжение 190-240 вольт с повышающим сопротивлением 50-55 вольт при входном напряжении в диапазоне от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальный стабилизатор напряжения для небольших устройств, таких как телевизор, холодильник, микроволновые печи, для одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизаторы текущего напряжения оснащены многими полезными дополнительными функциями, такими как защита от перегрузки, переключение нулевого напряжения, защита от изменения частоты, отображение отключения напряжения, средство запуска и остановки выхода, ручной или автоматический запуск, отключение напряжения и так далее.

Стабилизаторы напряжения являются очень энергоэффективными устройствами (с эффективностью 95-98%). Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Зачем нужны стабилизаторы напряжения и его важность

Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение. В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Рис. 2 — Проблемы из-за колебаний напряжения

Помните, нет ничего более важного для электронного устройства, чем отфильтрованный, защищенный и стабильный источник питания. Правильное и стабилизированное напряжение питания очень необходимо, чтобы устройство выполняло свои функции наиболее оптимальным образом. Это стабилизатор напряжения, который обеспечивает то, что устройство получает желаемое и стабилизированное напряжение, независимо от того, насколько сильно колебание. Таким образом, стабилизатор напряжения является очень эффективным решением для тех, кто хочет получить оптимальную производительность и защитить свои устройства от непредсказуемых колебаний напряжения, скачков напряжения и шума, присутствующих в источнике питания.

Как и источник бесперебойного питания, стабилизаторы напряжения также являются активом для защиты электронного оборудования. Колебания напряжения очень распространены независимо от того, где вы живете. Могут быть различные причины колебаний напряжения, такие как электрические неисправности, неисправная проводка, молнии, короткие замыкания и так далее. Эти колебания могут быть в форме перенапряжения или пониженного напряжения.

Эффекты повторяющегося перенапряжения в бытовой технике

  • Необратимые повреждения подключенного устройства
  • Повреждения изоляции обмотки
  • Перебои в нагрузке
  • Перегрев кабеля или устройства
  • Ухудшится срок полезного использования устройства
  • Неисправность оборудования
  • Низкая эффективность устройства
  • Устройство в некоторых случаях может занять дополнительные часы, чтобы выполнить ту же функцию
  • Ухудшить производительность устройства
  • Устройство будет потреблять больше электричества, что может привести к перегреву

Как работает стабилизатор напряжения, принцип работы понижения и повышения напряжения

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения. Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения. Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем.

В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения. Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.

Стабилизация напряжения включает в себя сложение или вычитание напряжения из первичного источника питания. Для выполнения этой функции стабилизаторы напряжения используют трансформатор, который подключен к переключающим реле в различных требуемых конфигурациях. Немногие из стабилизаторов напряжения используют трансформатор, имеющий различные отводы на своей обмотке, для обеспечения различных коррекций напряжения, в то время как стабилизаторы напряжения (такие как Servo стабилизатор напряжения) содержат автоматический трансформатор для обеспечения желаемого диапазона коррекции.

Как работает функция понижения и повышения в стабилизаторе напряжения

Для лучшего понимания обеих концепций мы разделим его на отдельные функции.

Функция понижения в стабилизаторе напряжения

Рис. 4 — Принципиальная схема функции понижения в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в функции «Понижения». В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.

В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).

Функция повышения в стабилизаторе напряжения


Рис. 6 — Принципиальная схема функции повышения напряжения в стабилизаторе напряжения

На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток.

Как конфигурация повышения и понижения работает автоматически

Вот пример 02 Stage Voltage Stabilizer. Этот стабилизатор напряжения использует 02 реле (реле 1 и реле 2) для обеспечения стабилизированного источника питания переменного тока для нагрузки в условиях перенапряжения и понижения напряжения.

На принципиальной схеме 02-ступенчатого стабилизатора напряжения (изображенного выше) реле 1 и реле 2 используются для обеспечения конфигурации понижения и повышения во время различных условий колебаний напряжения, то есть перенапряжения и пониженного напряжения. Например — предположим, что вход переменного тока 230 В переменного тока, а требуемый выход также постоянный 230 В переменного тока. Теперь, если у вас есть +/- 25 Вольт понижения & повышения стабилизация, это означает, что ваш стабилизатор напряжения может обеспечить вам постоянное требуемое напряжение (230 В) в диапазоне от 205 В (пониженное напряжение) до 255 В (повышенное напряжение) входного источника переменного тока.

В стабилизаторах напряжения, в которых используются трансформаторы с отводом, точки ответвления выбираются на основе требуемого количества напряжения, которое должно быть подавлено или повышено. В этом случае у нас есть разные диапазоны напряжения для выбора. Принимая во внимание, что в стабилизаторах напряжения, в которых используются автотрансформаторы, серводвигатели вместе со скользящими контактами используются для получения необходимого количества напряжения, которое необходимо стабилизировать или повысить. Скользящий контакт необходим, поскольку автотрансформаторы имеют только одну обмотку.

Различные типы стабилизаторов напряжения

Первоначально на рынке появились ручные / селекторные переключатели напряжения. В этих типах стабилизаторов используются электромеханические реле для подбора желаемого напряжения. С развитием технологий появились дополнительные электронные схемы и стабилизаторы напряжения стали автоматическими. Затем появился Servo стабилизатор напряжения, который способен стабилизировать напряжение непрерывно, без какого-либо ручного вмешательства. Теперь также доступны стабилизаторы напряжения на базе микросхем / микроконтроллеров, которые также могут выполнять дополнительные функции.

Стабилизаторы напряжения можно разделить на три типа:

  • Стабилизаторы напряжения типа реле
  • Servo стабилизаторы напряжения
  • Стабилизаторы статического напряжения

Стабилизаторы напряжения типа реле

В релейных стабилизаторах напряжения напряжение регулируется переключающими реле. Реле используются для подключения вторичного трансформатора в различных конфигурациях для достижения функции понижения и повышения.

Как работает релейный стабилизатор напряжения

Рисунок выше показывает, как стабилизатор напряжения типа реле выглядит изнутри. Он имеет трансформатор с ответвлениями, реле и электронную плату. Печатная плата содержит схему выпрямителя, усилитель, микроконтроллер и другие вспомогательные компоненты.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше эталонного значения, он переключает соответствующее реле для подключения требуемого постукивания для функции понижения и повышения.

Стабилизаторы напряжения релейного типа обычно стабилизируют входные колебания на уровне ± 15% с точностью на выходе от ± 5% до ± 10%.

Использование и преимущества релейных стабилизаторов напряжения

Этот стабилизатор в основном используется для приборов / оборудования с низким номинальным энергопотреблением в жилых / коммерческих / промышленных целях.

  • Они стоят дешевле
  • Они компактны по размеру

Недостатки релейных стабилизаторов напряжения

  • Их реакция на колебания напряжения немного медленнее по сравнению с другими типами стабилизаторов напряжения
  • Они недолговечны
  • Они менее надежны
  • Они не способны выдерживать скачки напряжения, так как их предел допуска на колебания меньше
  • При стабилизации напряжения переход тракта электропитания может обеспечить незначительное прерывание электропитания

Серво стабилизаторы напряжения

В servo стабилизаторах напряжения регулирование напряжения осуществляется с помощью серводвигателя. Они также известны как сервостабилизаторы. Это замкнутые системы.

Как работает серво стабилизатор напряжения?

В системе замкнутого контура отрицательная обратная связь (также известная как ошибка подачи) гарантируется от выхода, чтобы система могла гарантировать, что был достигнут желаемый результат. Это делается путем сравнения выходных и входных сигналов. Если в случае, если желаемый выход превышает / ниже требуемого значения, то регулятором источника входного сигнала будет получен сигнал ошибки (Выходное значение — Входное значение). Затем этот регулятор снова генерирует сигнал (положительный или отрицательный в зависимости от достигнутого выходного значения) и подает его на исполнительные механизмы, чтобы привести выходное значение к точному значению.

Благодаря свойству замкнутого контура стабилизаторы напряжения на основе сервоприводов используются для приборов / оборудования, которые очень чувствительны и нуждаются в точном входном питании (± 01%) для выполнения намеченных функций.

Рис. 10 — Внутренний вид серво стабилизатора напряжения

Рисунок выше показывает, как серво стабилизатор напряжения выглядит изнутри. Он имеет серводвигатель, автотрансформатор, трансформатор понижения и повышения, двигатель, электронную плату и другие вспомогательные компоненты.

В стабилизаторе напряжения на основе сервопривода один конец первичной обмотки трансформатора понижения и повышения (отвод) подключен к фиксированному ответвлению автотрансформатора, а другой конец первичной обмотки соединен с подвижным рычагом, который контролируется серводвигателем. Один конец вторичной катушки трансформатора
понижения и повышения подключен к входному источнику питания, а другой конец подключен к выходу стабилизатора напряжения.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше контрольного значения, он начинает работать с двигателем, который еще больше перемещает рычаг на автотрансформаторе.

При перемещении рычага на автотрансформаторе входное напряжение на первичной обмотке трансформатора понижения и повышения изменится на требуемое выходное напряжение. Серводвигатель будет продолжать вращаться, пока разность между значением опорного напряжения и выход стабилизатора становится равным нулю. Этот полный процесс происходит за миллисекунды. Современные серво стабилизаторы напряжения поставляются с микроконтроллерной / микропроцессорной схемой управления для обеспечения интеллектуального управления пользователями.

Различные типы серво стабилизаторов напряжения

Различные типы серво стабилизаторов напряжения:

Однофазные серво стабилизаторы напряжения

В однофазных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к переменному трансформатору.

Трехфазные сбалансированные серво стабилизаторы напряжения

В трехфазных стабилизированных стабилизаторах напряжения с сервоуправлением стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам, и общей цепи управления. Выходные данные автотрансформаторов варьируются для достижения стабилизации.

Трехфазные несбалансированные серво стабилизаторы напряжения

В трехфазных несимметричных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам и 03 независимым цепям управления (по одной на каждый автотрансформатор).

Использование и преимущества серво стабилизатора напряжения

  • Они быстро реагируют на колебания напряжения
  • Они имеют высокую точность стабилизации напряжения
  • Они очень надежные
  • Они могут выдерживать скачки напряжения

Недостатки серво стабилизатора напряжения

  • Они нуждаются в периодическом обслуживании
  • Чтобы обнулить ошибку, серводвигатель должен быть выровнен. Выравнивание сервомотора требует умелых рук.

Стабилизаторы статического напряжения


Рис. 13 — Статические стабилизаторы напряжения

Статический выпрямитель напряжения не имеет движущихся частей, как в случае серво стабилизаторов напряжения. Для стабилизации напряжения используется силовая электронная схема преобразователя. Эти статические стабилизаторы напряжения имеют очень высокую точность, а стабилизация напряжения находится в пределах ± 1%.

Стабилизатор статического напряжения содержит трансформатор понижения и повышения, силовой преобразователь с изолированным затвором (IGBT), микроконтроллер, микропроцессор и другие необходимые компоненты.

Как работает статический стабилизатор напряжения

Микроконтроллер / микропроцессор управляет IGBT-преобразователем питания для генерации требуемого уровня напряжения с использованием метода «широтно-импульсной модуляции». В методе «Импульсная широтно-импульсная модуляция» преобразователи питания в режиме переключения используют силовой полупроводниковый переключатель (например, MOSFET) для управления трансформатором для получения требуемого выходного напряжения. Это сгенерированное напряжение затем подается на первичную обмотку трансформатора понижения & повышения. Преобразователь мощности IGBT также контролирует фазу напряжения. Он может генерировать напряжение, которое может быть в фазе или на 180 градусов не в фазе по отношению к входному источнику питания, что, в свою очередь, позволяет ему контролировать, нужно ли добавлять или вычитать напряжение в зависимости от повышения или понижения уровня входного питания.

Рис. 15 — Принципиальная схема статического стабилизатора напряжения

Как только микропроцессор обнаруживает падение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Преобразователь мощности IGBT, соответственно, генерирует напряжение, аналогичное разности напряжений, на которую уменьшился входной источник питания. Это генерируемое напряжение находится в фазе с входным источником питания. Затем это напряжение подается на первичную обмотку трансформатора Понижения & Повышения. Поскольку вторичная катушка трансформатора Понижения & Повышения подключена к входному источнику питания, напряжение, наведенное во вторичной катушке, будет добавлено к входному источнику питания. И поэтому стабилизированное повышенное напряжение будет затем подаваться на нагрузку.

Аналогично, как только микропроцессор обнаруживает повышение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Соответственно, IGBT-преобразователь мощности генерирует напряжение, аналогичное разности напряжений, на которую уменьшился входной источник питания. Но на этот раз генерируемое напряжение будет на 180 градусов не в фазе по отношению к входному источнику питания. Затем это напряжение подается на первичную обмотку трансформатора Понижения & Повышения. Поскольку вторичная катушка трансформатора Понижения & Повышения подключена к входному источнику питания, напряжение, которое было наведено во вторичной катушке, теперь будет вычитаться из входного источника питания. И поэтому стабилизированное пониженное напряжение будет подаваться на нагрузку.

Использование / Преимущества статических стабилизаторов напряжения

  • Они очень компактны по размеру.
  • Они очень быстро реагируют на колебания напряжения.
  • Они имеют очень высокую точность стабилизации напряжения.
  • Поскольку нет движущейся части, она почти не требует технического обслуживания.
  • Они очень надежные.
  • Их эффективность очень высока.

Недостатки статического стабилизатора напряжения

Они дорогостоящие по сравнению со своими аналогами.

В чем разница между стабилизатором напряжения и регулятором напряжения?

Оба звучат одинаково. Они оба выполняют одинаковую функцию стабилизации напряжения. Однако то, как они это делают, приносит разницу. Основное функциональное отличие стабилизатора напряжения от регулятора напряжения:

Стабилизатор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений входного напряжения. В то время как,

Регулятор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений тока нагрузки.

Как выбрать лучший стабилизатор напряжения для вашего дома? Руководство по покупке

При покупке стабилизатора напряжения необходимо учитывать различные факторы. В противном случае вы можете столкнуться со стабилизатором напряжения, который может работать хуже или лучше. Чрезмерное выполнение не повредит, но это будет стоить вам лишних долларов. Так почему бы не выбрать такой стабилизатор напряжения, который может удовлетворить ваши требования и сохранить ваш карман тоже.

Различные факторы, которые играют важную роль в выборе стабилизатора напряжения

Различные факторы, которые играют жизненно важную роль и требуют рассмотрения перед выбором стабилизатора напряжения:

  • Требуемая мощность прибора (или группы приборов)
  • Тип прибора
  • Уровень колебаний напряжения в вашем районе
  • Тип стабилизатора напряжения
  • Рабочий диапазон стабилизатора напряжения, который вам нужен
  • Перегрузка по повышению / пониженному напряжению
  • Тип схемы стабилизации / управления
  • Тип монтажа для вашего стабилизатора напряжения

Пошаговое руководство по выбору и покупке стабилизатора напряжения для вашего дома

Вот основные шаги, которые вы должны выполнить, чтобы выбрать лучший выпрямитель напряжения для вашего дома:

  • Проверьте номинальную мощность устройства, для которой вам нужен стабилизатор напряжения. Номинальная мощность указана на задней панели устройства в виде наклейки или фирменной таблички. Это будет в киловаттах (KW). Обычно номинальная мощность стабилизатора напряжения указывается в кВА. Переведите его в киловатт (кВт).

(КВт = кВА * коэффициент мощности)

  • Подумайте о том, чтобы сохранить дополнительную маржу в 25-30% от номинальной мощности стабилизатора. Это даст вам дополнительную возможность добавить любое устройство в будущем.
  • Проверьте предел допуска колебаний напряжения. Если это соответствует вашим потребностям, вы готовы идти вперед.
  • Проверьте требования к монтажу и размер, который вам нужен.
  • Вы можете спросить и сравнить дополнительные функции в одном и том же ценовом диапазоне разных марок и моделей.

Практический пример для лучшего понимания

Предположим, вам нужен стабилизатор напряжения для вашего телевизора. Давайте предположим, что ваш телевизор имеет номинальную мощность 1 кВА. Допустимая надбавка 30% на 1 кВА составляет 300 Вт. Добавляя оба варианта, вы можете приобрести стабилизатор напряжения мощностью 1,3 кВт (1300 Вт) для вашего телевизора.

Видео совет при выборе стабилизатор напряжения

Самый важный совет при покупке стабилизатора напряжения

Стабилизатор напряжения — Википедия

Стабилиза́тор напряже́ния (англ. Voltage regulator) — электромеханическое[1] или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

Источник стабилизированного питания (англ. Power conditioner) — оборудование, применяемое для преобразования электрической энергии в форму, пригодную для последующего использования.[2]

Стабилизатор переменного напряжения

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного напряжения и переменного напряжения. Как правило, вид напряжения на входе стабилизатора и на его выходе совпадают (постоянное либо переменное), но в некоторых типах стабилизаторов их виды разные.

Стабилизаторы постоянного напряжения[править | править код]

Микросхема линейного стабилизатора КР1170ЕН8

Линейный стабилизатор[править | править код]

Линейный стабилизатор напряжения представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах.

При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть входной мощности рассеивается в виде тепла на регулирующем элементе, мощность потерь в последовательном стабилизаторе PL{\displaystyle P_{L}}:

PL=(Uin−Uout)⋅Iout,{\displaystyle P_{L}=(U_{in}-U_{out})\cdot I_{out},}
где Uin{\displaystyle U_{in}} — входное напряжение стабилизатора,
Uout{\displaystyle U_{out}} — выходное напряжение стабилизатора,
Iout{\displaystyle I_{out}} — выходной ток стабилизатора.

Поэтому регулирующий элемент в стабилизаторах такого типа и повышенной мощности должен рассеивать значительную мощность, то есть должен быть установлен на радиатор нужной площади.

Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых электронных компонентов.

В зависимости от включения элемента с изменяемым сопротивлением линейные стабилизаторы классифицируются на два типа:

  • Последовательный: регулирующий элемент включен последовательно с нагрузкой.
  • Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

  • Параметрический: в таком стабилизаторе используется участок ВАХ прибора, где дифференциальное сопротивление прибора мало в широко диапазоне изменения токов, протекающих через прибор.
  • Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на полупроводниковом стабилитроне[править | править код]

В этой схеме может быть применён как полупроводниковый стабилитрон, так и газоразрядный стабилитрон тлеющего разряда.

{\displaystyle I_{out}} Простейшая схема параметрического стабилизатора

Такие стабилизаторы применяется для стабилизации напряжения схем с малым потребляемым током, так как для стабилизации напряжения ток через стабилитрон D1{\displaystyle D1} должен в несколько раз (3 — 10) превышать ток потребления от стабилизатора в присоединённой нагрузке RL{\displaystyle R_{L}}. Обычно такая схема линейного стабилизатора применяется в качестве источника опорного напряжения в более сложных схемах регулирующих стабилизаторов.

Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV{\displaystyle R_{V}} включают двухполюсник с высоком дифференциальным сопротивлением на участке ВАХ в диапазоне рабочих токов, работающий как источника тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе[править | править код]
{\displaystyle R_{V}}

В этой схеме напряжение на базе регулирующего транзистора равно напряжению на стабилитроне Uz{\displaystyle U_{z}} и выходное напряжение будет: Uout=Uz−Ube, {\displaystyle U_{out}=U_{z}-U_{be},\ } Ube{\displaystyle U_{be}} — напряжение между базой и эмиттером транзистора. Так как Ube{\displaystyle U_{be}} мало зависит от тока эмиттера, — выходного тока стабилизатора, и невелико (0,4 В для германиевых транзисторов и 0,6—0,65 В для кремниевых транзисторов) приведённая схема осуществляет стабилизацию напряжения.

Фактически схема представляет собой рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет контура авторегулирования, обеспечивающего практически полную компенсацию изменений выходного напряжения и изменений выходного тока.

Выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube{\displaystyle U_{be}}, которая мало зависит от величины тока, протекающего через транзистор. Некоторая зависимость Ube{\displaystyle U_{be}} от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель здесь является усилителем тока и позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в Bst{\displaystyle B_{st}} раз, Bst{\displaystyle B_{st}} — статический коэффициент передачи тока транзистора в режиме с общим коллектором. Так как Bst{\displaystyle B_{st}} в несколько десятков раз больше 1, малый ток, отбираемый от параметрического стабилизатора усиливается в Bst{\displaystyle B_{st}} раз. Если такого усиления тока недостаточно для обеспечения заданного выходного тока, то применяют составной транзистор, например, пару Дарлингтона.

При очень малом токе нагрузки, порядка единиц — десятков мкА, выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на примерно 0,6 В, так как Ube{\displaystyle U_{be}} при таких токах становится близким к нулю. В некоторых применениях это нежелательно, тогда к выходу стабилизатора подключают дополнительный нагрузочный резистор, обеспечивающий в любом случае минимальный ток нагрузки стабилизатора в несколько миллиампер.

Последовательный компенсационный стабилизатор с контуром авторегулирования[править | править код]
U_{{be}} Последовательный компенсационный стабилизатор с применением операционного усилителя

В таких стабилизаторах выходное напряжение сравнивается с опорным напряжением, разность этих напряжения усиливается усилителем сигнала рассогласования, выход усилителя сигнала рассогласования управляет регулирующим элементом.

В качестве примера приведена схема на рисунке. Часть выходного напряжения Uout{\displaystyle U_{out}}, снимаемая с резистивного делителя напряжения, состоящего из потенциометра R2{\displaystyle R2} и постоянных резисторов R1, R3{\displaystyle R1,\ R3} сравнивается с опорным напряжением Uz{\displaystyle U_{z}} от параметрического стабилизатора — стабилитрона D1{\displaystyle D1}. Разность этих напряжений усиливается дифференциальным усилителем на операционном усилителе (ОУ) U1{\displaystyle U1}, выход которого изменяет базовый ток транзистора, включенного по схеме эмиттерного повторителя[3].

В этой схеме имеется контур авторегулирования, — петля отрицательной обратной связи. Если выходное напряжение меньше заданного, то через обратную связь регулирующий транзистор открывается больше, если выходное напряжения больше заданного, — то наоборот.

Для устойчивости контура авторегулирования петлевой сдвиг фазы должен быть близок к 180°. Так как часть выходного напряжения Uout{\displaystyle U_{out}} подаётся на инвертирующий вход операционного усилителя U1{\displaystyle U1}, сдвигающего фазу на 180°, а регулирующий транзистор включен по схеме эмиттерного повторителя, который при низких частотах фазу не сдвигает, это обеспечивает устойчивость контура авторегулирования, так как петлевой сдвиг фазы близок к 180°.

Опорное напряжение Uz{\displaystyle Uz} зависит от величины тока, протекающего через стабилитрон. Основной источник нестабильности опорного напряжения — изменения входного напряжения, так как при таких изменениях изменяется ток стабилитрона. Для стабилизации тока при изменениях Uin{\displaystyle U_{in}} вместо резистора RV{\displaystyle R_{V}} иногда включают источник тока.

В этом стабилизаторе ОУ включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение сопротивлений резисторов в цепи обратной связи задают его коэффициент усиления, определяющий во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения Uz{\displaystyle U_{z}} (напряжение стабилизации стабилитрона) должна быть выбрана меньше, чем Uout{\displaystyle U_{out}}, либо опорное напряжение снимают с резистивного делителя, подключённого к стабилитрону.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, так как за счёт большого коэффициента усиления современных ОУ, достигающих 105…106, остальные источники нестабильности выходного напряжения оказываются скомпенсированными.

Параметры такого стабилизатора оказались подходящими для многих практических нужд. Поэтому уже почти полвека выпускаются, и на сегодня имеют широчайшее применение, такие стабилизаторы в интегральном исполнении: КР142ЕН5А, 7805 и мн. др.

Импульсный стабилизатор[править | править код]

В импульсном стабилизаторе напряжение от нестабилизированного внешнего источника подаётся на накопитель энергии (обычно конденсатор или дроссель) короткими импульсами формируемыми посредством электронного ключа. Во время замкнутого состояния ключа в накопителе запасается энергия, которая затем передается в нагрузку. Применение в качестве накопительного элемента дросселя позволяет изменять выходное напряжение стабилизатора относительно входного без использования трансформаторов: увеличивать, снижать или инвертировать. Стабилизация осуществляется должным управлением длительностью импульсов и пауз между ними с помощью широтно-импульсной модуляции, частотно-импульсной модуляции или их комбинации.

Импульсный стабилизатор по сравнению с линейным обладает значительно более высоким КПД, так как регулирующий элемент работает в ключевом режиме. Недостатки импульсного стабилизатора - импульсные помехи в выходном напряжении и относительная сложность.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом, зависящим от схемы стабилизатора и режима управления его ключами:

  • Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
  • Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
  • Повышающе-понижающий стабилизатор: выходное напряжение в зависимости от режима управления ключами может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение может отличаться от выходного напряжения в любую сторону.
  • Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение входного напряжения может быть любым.
  • Универсальный - выполняющий все функции перечисленных.

Стабилизаторы переменного напряжения[править | править код]

Подразделяются на два основных вида

1) Однофазные стабилизаторы напряжения на 220-230 вольт- предназначение, бытовые, офисные и промышленные нагрузки небольших мощностей.

2) Трехфазные стабилизаторы напряжения на 380-400 вольт- предназначение, промышленные нагрузки средних и больших мощностей.

Феррорезонансные стабилизаторы[править | править код]

Феррорезонансный стабилизатор для питания цветных ламповых телевизоров, СССР, 1970-е — 1980-е гг.

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно их использовали для питания телевизоров. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи телевизора, например, цепи анодного напряжения и накала электровакуумных приборов питались нестабилизированным напряжением), что при суточных колебаниях и резких скачках сетевого напряжения, особенно в сельской местности, приводило к ухудшению качества изображения и требовало предварительной стабилизации переменного сетевого напряжения.

С появлением телевизоров более поздних поколений, например, 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, исчезла необходимость во внешней дополнительной стабилизации напряжения сети.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него, так как его ферромагнитный сердечник периодически насыщается. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах. Недостатком таких стабилизаторов является чувствительность к частоте напряжения в питающей сети. Незначительное отклонение частоты питающей сети существенно влияет на выходное напряжение феррорезонансного стабилизатора.

Современные стабилизаторы[править | править код]

В настоящее время основными типами стабилизаторов являются:

  • электродинамические
  • с электромеханическим сервоприводом регулирующего элемента, например, автотрансформатора
  • феррорезонансные
  • электронные разных типов
    • ступенчатые (силовые электронные ключи, симисторные, тиристорные)
    • ступенчатые релейные (силовые релейные ключи)
    • компенсационные (электронные плавные)
    • комбинированные (гибридные)

Промышленностью производятся разнообразные модели с входным напряжением однофазной сети, (220/230 В), так и трёхфазной (380/400 В) исполнении, с выходной мощностью их от нескольких единиц ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15 %, ±20 %, ±25 %, ±30 %, ±50 %,−25 %/+15 %, −35 %/+15 % или −45 %/+15 %. Чем шире диапазон (особенно в сторону снижения входного напряжения), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности. В настоящее время существуют модели стабилизаторов напряжения с нижним допустимым входным напряжением 90 вольт.

Важной характеристикой стабилизатора напряжения является его быстродействие, - скорость отклика на возмущение. Чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие определяется как промежуток времени, за которое стабилизатор способен изменить выходное напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия. -->

Важным параметром является точность стабилизации выходного напряжения стабилизатора переменного сетевого напряжения. Согласно ГОСТ 13109-97 предельно допустимо отклонение выходного напряжения на ±10 % от номинального. Точность стабилизации современных стабилизаторов напряжения колеблется в диапазоне от 0,5 % до 8 %.

Точности в 8 % вполне хватает для обеспечения исправной работы подавляющего большинства современной бытовых и промышленных электротехнических устройств со встроенными инверторными и импульсными блоками питания. Так как мощность оборудования напрямую зависит от напряжения, то для обеспечения корректной (заявленной производителем) работы с прогнозируемым результатом и расходом электроэнергии необходимо точное напряжения (0,5-1 %).[источник не указан 1445 дней] Более жесткие требования (точность стабилизации лучше 1 %) предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора отдавать номинальную мощность во всем диапазоне входного напряжения, но не все стабилизаторы обладают таким свойством.

КПД сервоприводных стабилизаторов большой мощности более 98 %, а электронных большой мощности - 96 %.

  • Вересов Г. П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • Китаев В. В. Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Техніка, 1976.
  • Лепаев Д. А. Электрические приборы бытового назначения. — М.: Легпромбытиздат, 1991. — 272 с. — 20 000 экз.

Как выбрать стабилизатор напряжения (2018) | Блог

Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели. 

Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя. 

Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению. 

Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор. 

Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.

Защита электроприборов

Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.

Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту. 

Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.

СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.

Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.

Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.

Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.

Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.

Характеристики стабилизаторов

Тип стабилизатора напряжения

Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле. 

При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.

Преимущества релейных стабилизаторов:

– Низкая цена.

– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.

– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.

Недостатки:

– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.

– Шумность. Реле при переключении щелкает довольно громко.

– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.

Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное. 

Преимущества электромеханических стабилизаторов:

– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.

– Плавность регулирования.

– Высокая точность регулирования.

– Низкий уровень шума при регулировании.

Недостатки:

– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.

– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.

– Высокая цена.

Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный. 

Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.

Недостатки инверторных стабилизаторов:

– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.

– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.

– Высокая чувствительность к мощным импульсным помехам. Впрочем, в бытовых сетях такие помехи - явление маловероятное.

Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов. 

Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом. 

Но свои недостатки есть и у этого вида стабилизаторов:

– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.

– Ступенчатость регулирования.

– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.

Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:

Полные мощности всех потребителей следует сложить и добавить к получившейся сумме 30% - дело в том, что мощность стабилизатора приводится для напряжения 220В. При выходе напряжения за пределы нормального, мощность стабилизатора падает на 20-30%. Именно это падение и следует компенсировать. 

Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.

Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:

  • 150/0,8=187,5
  • 500/0,7=714,3
  • 500/0,95=526,3

Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.

Пусковая мощность будет равна:

  • 187,5*3=562,5
  • 714,3*7=5000
  • 526,3*1,5=790

Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.

Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей. 

Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.

Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей. 

Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.

Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.

Варианты выбора стабилизаторов

Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.

Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.

С защитой всех домашних электроприборов справится мощный стабилизатор.

Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.

Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.

 

 

 

 

 

 

 

 

 

 

 

 

Полезная информация о стабилизаторах | Cтабилизаторы напряжения

подбор стабилизатора напряжения дома

Как подбрать стабилизатора напряжения для дома

 

Подбор стабилизатора напрямую зависит от суммы всех мощностей имеющихся электроприборов, одновременное использование которых допустимо, а также от нижней границы напряжения в сети.

Обратите внимание, в большинстве случаев все насосы, работающие на асинхронных двигателях, и основанная на них техника, к примеру, холодильник, расходуют мощность, почти в 1,5 раза превышая собственную номинальную. А причиной этому является отображение лишь полезной мощности, не включая потери (cos fi = 0,6 – 0,7).

Такие устройства отличаются чрезвычайно высокими пусковыми токами. Они могут значительно превышать номинальный.

Гарантированное правильное выполнение функций стабилизатора с ними, обеспечит такой вариант, как накапливание мощности в 1,5-2 раза. К примеру, к насосу в 1 КВт подойдёт стабилизатор, показатели которого равны не меньше 1,5 КВт.

Один из самых сложных случаев – это холодильник, десятилетнего производства и более. Раньше не было никаких общепризнанных стандартов по степени шума или предоставлению низких пусковых токов. Например, в холодильниках со 100 Вт допускается пусковая мощность 1,5 КВт и выше. Также отсутствовали какие-либо ограничения на паразитные выбросы энергии, которая накапливается в индуктивности компрессора (мотора) назад в сеть. Нормальное взаимодействие холодильников такого типа и стабилизаторов напряжения на симисторных ключах практически невозможно. Современные модели холодильников отличаются небольшой степенью шума и вертикальным компрессором. Отлично синхронизируются с ними стабилизаторы напряжения таких серий, как NORMA и STANDARD.

Хотелось бы выделить СВЧ-печь. Её магнетрону также необходим запас мощности в 1,5 раза относительно предельной мощности стабилизатора напряжения. Например, печь в 1 КВт взаимодействует со стабилизатором, обладающего предельной ёмкостью в 1,5 КВт и выше.

Таблица показателей средней потребляемой мощности приборов

Наименования электроприборов Мощность, Вт
Телевизор 60
Моноблок 80
Проигрыватель DVD 40
Видеомагнитофон 40
Видеоплейер 40
Видеокамера 11
Акустическая система до 100
Караоке 50
Буфер до 150
Ресивер до 1000
Система ДК 100
Музыкальный центр 50
Тюнер 10
Усилитель 400
Аудиомагнитофон 40
Электрогазовая плита до 4000
Электрическая плита до 10000
Морозильная камера 200
Холодильник до 200
Посудомоечная машина 2000
Стиральная машина 2300
Поверхность электрическая до 6000
Поверхность электрогазовая 2000
Духовка 2000
Эл.водонагреватель до 1500
Воздухоочиститель (вытяжка) 300
Конвектор 2000
Тепловентилятор 2000
Электрический радиатор 2500
Электрический камин 2500
Кондиционер до 1500
Вентилятор 100
Вафельница 2000
Кофеварка до 2000
Кофеварка-эспрессо до 2000
Кофемолка 180
Сендвичница 2000
Тостер 2000
Эл.чайник 2000
Фритюрница 1000
Блендер 600
Кухонный комбайн до 1000
Миксер 400
Мясорубка до 1000
Соковыжималка 500
Печь СВЧ 2500
Пылесос до 2000
Сушилка для рук 1500
Утюг 1500
Прибор для укладки волос 500
Фен 1500
Щипцы для завивки 35
Швейная машина 135
Компьютер 135

Для чего нужен стабилизатор напряжения

Стабилизатор – это устройство, представляющее собой электрический прибор, который используется для выравнивания колебаний напряжения сети при подаче тока на технику, такую как компьютеры, кондиционеры, насосы и др.

Для чего нужен стабилизатор напряжения? Регулятор в основном предназначен:

  • защищать электрооборудование от различных угроз, таких как колебания напряжения, высокое и низкое напряжение;
  • отключать технику от некачественного электропитания, при увеличении или снижении пороговых значений напряжения;
  • поддерживать напряжение на надлежащем уровне.

Этот аппарат имеет множество уникальных особенностей, которые позволяют экономить электроэнергию, влиять на производительность и повышать надежность техники. На дисплее аппарата высвечиваются основные параметры электрической сети, быть всегда в курсе о них – это значит владеть ситуацией. Функция задержки включения обеспечивает передышку и стабилизирует питание перед подачей на нагрузку, следовательно, увеличивает срок службы приборов.

И всё-таки, зачем нужен стабилизатор? Его использование представляет собой самую доступную и эффективную меру энергосбережения, сохранения приборов от выхода из строя и душевного спокойствия домочадцев.

Несколько советов по выбору стабилизатора

Если устройство выбрано правильно, то на него всегда можно положиться и довериться. Если в технике не особо разбираться, то можно положиться на предложения и советы продавца по выбору стабилизатора напряжения. Профессионал порекомендует для начала:

  • определиться с мощностью, типом стабилизатора и рабочим диапазоном напряжения;
  • выявить и проанализировать проблематику: повышенное, пониженное или скачкообразно изменяющееся напряжение в сети питания.

Исходя из полученных данных, затем приступить к выбору устройства.

Как правильно рассчитать мощность прибора? В идеале нужно определить, какой самый мощный потребитель присутствует в схеме электроснабжения. Допустим, электроприёмниками являются насосная станция мощностью 1, 5 кВт, сауна – 10 кВт плюс ещё какой-либо прибор с большим энергопотреблением. Все значения в киловаттах необходимо сложить и получить искомую мощность прибора.

Стабилизатор выбирается с небольшим запасом мощности (20%), особенно если в цепи присутствует оборудование с большим пусковым током. Речь идёт об электродвигателях и насосах, которые при пуске потребляют энергии больше, чем в обычном режиме.

Запас мощности обеспечивает долгую жизнь прибора, благодаря щадящему режиму работы, и создаёт резервный потенциал для подключения нового оборудования.

Выбирая стабилизатор также нужно учитывать сервисное обслуживание, потому что прибор следует правильно и качественно подключить, а также воспользоваться гарантийным сроком и отремонтировать в случае неисправности.

Как правильно выбирать стабилизатор напряжения для дома?

Можно воспользоваться самым простым вариантом: определить потребление мощности из сети по номиналу вводного автомата в квартирном щитке. Таким образом, узнаётся пропускная способность автомата и максимально возможная мощность потребления на бытовые нужды.

Приведём простой пример. Как выбрать стабилизатор напряжения 220 В для дома, если на вводе стоит автомат S40. С таким номинальным током от сети можно получить не более 10 кВт. Исходя из расчётных данных, и выбирается аппарат.

На сегодняшний день низкое напряжение в сети – проблема весьма актуальная и решить её лучше всего одним способом – приобрести стабилизатор, который защитит всю технику в доме от выхода из строя. Чтобы правильно выбрать устройство, сначала нужно разобраться с его разновидностями, а также преимуществами каждого варианта исполнения.

Типы защитных устройств

Самыми популярными типами стабилизаторов на сегодня являются:

  • электронные,
  • электромеханические.

Электронные стабилизаторы напряжения – это приборы наилучшего качества. Ввиду отсутствия механических частей характеризуются большим сроком службы, минимум 15 лет, и довольно высокой надёжностью. Можно подбирать по рабочему диапазону напряжений практически под любые задачи.

Электромеханические стабилизаторы напряжения характеризуются небольшим быстродействием, узким диапазоном напряжений, но зато хорошей перегрузочной способностью.

Полезная информация о стабилизаторах напряжения по поводу высокой точности

Многие стараются выбрать устройство с максимальной точностью стабилизации, вплоть до 0,5 %. Однако, как правило, отклонение в 10–15 В считается нормальным режимом работы для большинства техники. И только в редких случаях оборудование при таких отклонениях не работает или капризничает. Большая часть предлагаемых на рынке стабилизаторов обеспечивает именно такой режим работы.

Частым заблуждением покупателей является то, что приобретаемое устройство с высокой точностью стабилизации – это гарантия стабильного напряжения и отсутствие мерцания света. На самом деле, получается наоборот: чем больше точность у прибора, тем чаще он переключается, подстраиваясь под входную сеть, поэтому и лампочки не перестают мерцать. Это касается ламп накаливания и галогенок.

При установке стабилизатора симисторного и релейного типа мерцание лампочек стопроцентно будет сохраняться. Исключение составляют лишь стабилизаторы с плавной регулировкой сигнала. Это касается новых разработок стабилизаторов, таких как Вольтер. При выборе регулятора желательно руководствоваться рекомендациями от производителя или профессионалов. Можно для верности ещё почитать положительные и отрицательные отзывы в интернете на конкретную модель или бренд.

Какой выбрать однофазный или трехфазный?

Если в дом заведены три фазы, совсем необязательно устанавливать трёхфазный стабилизатор. Чаще всего, оказывается, можно обойтись однофазниками. При этом преимуществ можно получить очень много.

Во-первых, по стоимости, которая в общей сложности у трёх однофазных меньше, чем у трёхфазного. Во-вторых, по ремонтопригодности более надёжно. Одно дело – снять один блок и отвести его на ремонт, другое – снять полностью аппарат.

Коммерческая выгода от установки стабилизатора напряжения

Отечественные электросети физически сильно изношены, а местами и морально устарели. А потребителей становится всё больше и больше. Установка стабилизаторов выгодна по нескольким причинам:

  1. современная техника оснащена электронной начинкой, которой важно качественное питание. Для того чтобы она не вышла из строя или не подвергалась дорогостоящему ремонту, необходима установка стабилизатора;
  2. пониженное напряжение влечёт за собой большее потребление тока из сети. Приходится платить больше за расход электроэнергии. Выгода стабилизатора очевидна;
  3. повышенное напряжение может привести к короткому замыканию, перегреву проводов и пожару. Без стабилизатора в этом случае материальный и моральный ущерб может быть колоссальный, а то и непоправимый;
  4. при нормальном напряжении тоже могут случиться внезапные импульсы от молнии, ошибок персонала, перекоса фаз в час пик.

Во всех этих и других непредвиденных случаях стабилизатор напряжения поможет сберечь время, средства и нервы.

Возможные последствия для приборов (электрических потребителей) в условиях отклонения напряжения от нормы

  • Снижение напряжения приводит к уменьшению светового потока ламп. При плохом свете снижается производительность качество выполняемой работы.
  • Плохое освещение на улицах города приводит к росту несчастных случаев.
  • Повышение напряжения ведёт к резкому уменьшению срока службы лампочек, иногда вдвое, а то и в три раза.
  • Бытовые нагревательные приборы (плитки, утюги и т. п.), рассчитанные на паспортную мощность, при снижении напряжения дольше нагреваются. И поэтому получается перерасход электроэнергии на бытовые нужды.

Вот, что такое стабилизатор напряжения и зачем он нужен.

Подведём небольшой итог

Ценными качествами регуляторов являются быстрая реакция прибора на изменение параметров в сети, расширенный диапазон рабочего напряжения, хорошая перегрузочная способность, синусоида правильной формы на выходе, бесшумность.

Но сколько бы ни говорилось о достоинствах той или иной марки, для потребителя наиболее приоритетной характеристикой всегда остаётся соотношение цены и качества. Поэтому золотой серединой, несомненно, станет выбор качественной отечественной продукции.

Стабилизаторы напряжения: классификация, схемы, параметры, достоинства

рис. 2.82 вПараметры стабилизаторов напряжения

Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации Kст, выходное сопротивление Rвых и коэффициент полезного действия η.

Коэффициент стабилизации определяют из выражения Kст= [ ∆uвх/ uвх] / [ ∆uвых/ uвых]

где uвх, uвых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆uвх — изменение напряжения uвх; ∆uвых — изменение напряжения uвых, соответствующее изменению напряжения ∆uвх.

Таким образом, коэффициент стабилизации — это отношение относительного изменения напряжения на входе к соответствующему относительному изменению напряжения на выходе стабилизатора.

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина Kст составляет единицы, а у более сложных — сотни и тысячи.

Выходное сопротивление стабилизатора определяется выражением Rвых= | ∆uвых/ ∆iвых|

где ∆uвых— изменение постоянного напряжения на выходе стабилизатора; ∆iвых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.

Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина Rвых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.

Коэффициент полезного действия стабилизатора ηст — это отношение мощности, отдаваемой в нагрузку Рн, к мощности, потребляемой от входного источника напряжения Рвх: ηст = Рн / Рвх

Традиционно стабилизаторы разделяют на параметрические и компенсационные.

Интересное видео о стабилизаторах напряжения:

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82). рис. 2.82 а и б
Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в). рис. 2.82 в
Из графических построений очевидно, что при значительном изменении эквивалентного напряжения uэ (на ∆uэ), а значит, и входного напряжения uвх, выходное напряжение изменяется на незначительную величину ∆uвых.

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.

 Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆uвх (на схеме пунктир): Rвых= rд|| R0≈ rд, т.к. R0>> rд ηст = ( uвых· Iн) / ( uвх· Iвх) = ( uвых· Iн) / [ uвх( Iн + Iвх) ].

Kст= ( ∆uвх/ uвх) : ( ∆uвых/ uвых) Так как обычно Rн>> rд Следовательно, Kст≈ uвых / uвх· [ ( rд+ R0) / rд]

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения. рис. 2.82 г

Компенсационные стабилизаторы

Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) напряжения (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).

Напряжение на выходе стабилизатора или некоторая часть этого напряжения постоянно сравнивается с эталонным напряжением.

 В зависимости от их соотношения сравнивающим и усиливающим элементом вырабатывается управляющий сигнал для регулирующего элемента, изменяющий его режим работы таким образом, чтобы напряжение на выходе стабилизатора оставалось практически постоянным.

В качестве ИОН обычно используют ту или иную электронную цепь на основе стабилитрона, в качестве СУЭ часто используют операционный усилитель, а в качестве РЭ — биполярный или полевой транзистор.

Чаще всего регулирующий элемент включают последовательно с нагрузкой. В этом случае стабилизатор называют последовательным (рис. 2.83, а).

рис. 2.83
Иногда регулирующий элемент включают параллельно нагрузке, и тогда стабилизатор называют параллельным (рис. 2.83, б. Здесь СУЭ и ИОН с целью упрощения не показаны). В параллельном стабилизаторе используется балластное сопротивление Rб, включаемое последовательно с нагрузкой.

В зависимости от режима работы регулирующего элемента стабилизаторы разделяют на непрерывные и импульсные (ключевые, релейные).

В непрерывных стабилизаторах регулирующий элемент (транзистор) работает в активном режиме, а в импульсных — в импульсном.

Рассмотрим типичную принципиальную схему непрерывного стабилизатора (рис. 2.84, а). рис. 2.84 а
Эта схема соответствует приведенной выше структурной схеме последовательного стабилизатора. Для того чтобы выполнить наиболее просто анализ этой схемы на основе тех допущений, которые были рассмотрены при изучении операционного усилителя,изобразим эту схему по-другому. При этом цепи питания операционного усилителя для упрощения рисунка изображать не будем. рис. 2.84 б
Из схемы (рис. 2.84, б) очевидно, что на элементах R2, R3, DA и VT построен неинвертирующий усилитель на основе ОУ с выходным каскадом в виде эмиттерного повторителя на транзисторе VT, а входным напряжением для него является выходное напряжение параметрического стабилизатора напряжения на элементах R1 и VD. В соответствии с указанными выше допущениями получаем:

uR3= uст, т.е. iR3· R3= uст

uR2 = uR3 – uвых

iR2 = − iR3 = − uст/ R3

Подставляя выражение для iR2 в предыдущее уравнение, получим − uст/ R3· R2= uст – uвых. Следовательно, uвых = uст· ( 1 + R2/ R3)

Последнее выражение в точности повторяет соответствующие выражения для неинвертирующего усилителя (входным напряжением является напряжение uст).

Полезно отметить, что ООС охватывает два каскада — на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.

Основным недостатком стабилизаторов с непрерывным регулированием является невысокий КПД, поскольку значительный расход мощности имеет место в регулирующем элементе, так как через него проходит весь ток нагрузки, а падение напряжения на нем равно разности между входным и выходным напряжениями стабилизатора.

В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.

Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов — на рис. 2.85. рис. 2.85 Таблица 2.1
Резистор R предназначен для срабатывания защиты по току, а R1 — для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.

Импульсные стабилизаторы напряжения в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.

Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 %, в то время как у непрерывных стабилизаторов он составляет 30 − 50%.

В силовом элементе, работающем в ключевом режиме, средняя за период коммутации мощность, рассеиваемая в нем, значительно меньше, чем в непрерывном стабилизаторе, так как хотя в замкнутом состоянии ток, протекающий через силовой элемент, максимален, однако падение напряжения на нем близко к нулю, а в разомкнутом состоянии ток, протекающий через него, равен нулю, хотя напряжение максимально. Таким образом, в обоих случаях рассеиваемая мощность незначительна и близка к нулю.

Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.

К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения.

Рассмотрим импульсный последовательный стабилизатор напряжения (рис. 2.86). рис. 2.86
Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения напряжения на нагрузке. Напряжение на выходе регулируют, изменяя отношение tвкл / tвыкл, где tвкл, tвыкл — длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше напряжение на выходе.

В качестве ключа S часто используют биполярный или полевой транзистор.

Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов напряжения на ключе в момент коммутации. LC-фильтр снижает пульсации напряжения на выходе.

Ещё одно интересное видео о стабилизаторах:

основные критерии, принцип работы, недостатки и преимущества

Электронный стабилизатор напряжения картинка

06.05.2019

Электронные стабилизаторы напряжения широко используются в быту для защиты техники от перепадов напряжения. В отличие от релейных стабилизаторов, эти приборы не содержат механических или электромеханических компонентов, что дает им более лучшие технические возможности. Для преобразования напряжения в них применяются полупроводниковые элементы – тиристоры или симисторы.

В данной статье мы расскажем об электронных стабилизаторах, их особенностях, принципах работы и сферах применения, а также раскроем их недостатки и выделим достоинства.

Устройство и принцип действия электронного стабилизатора

Электронный стабилизатор обычно состоит из следующих компонентов:

  • измерителей входного и выходного напряжения;
  • управляющей микросхемы, которая анализирует данные от измерителей и при необходимости включает процесс преобразования напряжения;
  • трансформатора с возможностью переключения обмоток для регулировки напряжения;
  • блока электронных ключей (тиристоров или симисторов), который управляет переключением обмоток.

Структурная схема электронного стабилизатора картинка

Принцип действия электронного стабилизатора может быть описан следующим образом:

при изменении напряжения в питающей сети фиксируется разница между фактическим и номинальным его значением. Управляющий микропроцессор подает сигнал на включение определенного силового ключа, коммутирующего именно ту секцию обмотки трансформатора, коэффициент трансформации которой обеспечит наиболее приближенное к номиналу значение выходного напряжения.

Таким образом, принцип действия электронных стабилизаторов во многом схож с работой устройств релейного типа. Если в последних коммутация необходимых обмоток автотрансформатора осуществляется при помощи электромеханических реле, то в электронных устройствах вместо них используются отличающиеся гораздо более высоким быстродействием силовые полупроводниковые ключи - тиристоры или симисторы.

Также конструкция электронного стабилизатора предусматривает работу в режиме «байпас» – когда сетевое напряжение находится в пределах нормы, электричество направляется в обход трансформатора и непосредственно подается потребителю.

Таким образом, питание электроприборов через электронный стабилизатор напряжения осуществляется следующим образом:

  1. Если параметры электротока соответствуют нормативным, он проходит через байпас, не нагружая основные цепи стабилизатора.
  2. Если происходит падение или возрастание напряжения, измеритель на входе стабилизатора фиксирует это изменение.
  3. Управляющая микросхема стабилизатора отдает соответствующую команду и срабатывает блок электронных ключей.
  4. В цепь включаются обмотки трансформатора, которые осуществляют преобразование напряжений до нужного уровня.

В чем разница между симисторным и тиристорным стабилизатором?

Электронные стабилизаторы могут строиться на основе тиристоров или симисторов.

Принцип работы тиристора

Принцип работы симистора

Тиристор представляет собой полупроводниковый элемент, который позволяет управлять прохождением тока.

Он пропускает ток только в одном направлении и имеет два состояния - «открыто» или «закрыто». Ими можно управлять с помощью подачи импульса на один из входов.

В стабилизаторе тиристор используется для подключения обмотки трансформатора.

Симистор функционирует сходным c тиристором образом. Его название представляет собой сокращение от слов «симметричный тиристор».

Главное отличие от тиристора заключается в том, что симистор пропускает ток в двух направлениях. Поэтому в симисторном стабилизаторе при тех же параметрах можно использовать в два раза меньше электронных компонентов. Это делает его более компактным и надежным.

Достоинства и недостатки электронных стабилизаторов

Ниже представлены основные достоинства и недостатки электронных стабилизаторов по сравнению с релейными приборами. Они обусловлены, в первую очередь, строением и особенностями метода преобразования напряжения электронных стабилизаторов.

Достоинства

Недостатки

  1. Не имеют механических элементов, поэтому издают меньше шума при работе и считаются в целом более надежными.

  2. Реагируют на изменения параметров электросети быстрее.

  3. Имеют меньший шаг изменения при регулировке напряжения, что позволяет добиться более высокой точности стабилизации – от 5 до 10 %.

  4. Электронные ключи, в отличие от реле, весьма компактны, а значит, их количество можно увеличить без существенного увеличения размеров устройства.

  1. Выходное напряжение имеет форму, отличную от синусоидальной (трапециевидную или с другими искажениями, в зависимости от конкретной модели стабилизатора).

  2. Точности, которую дает ступенчатая регулировка напряжения, может оказаться недостаточно для питания устройств, чувствительных к качеству электроснабжения.

  3. Более высокая стоимость в сравнении с релейными моделями.

Сферы применения электронных стабилизаторов напряжения

Такие преимущества электронных стабилизаторов перед релейными устройствами, как более высокая скорость и точность регулирования напряжения, бесшумность в работе, надежность и длительность ресурса работы, благодаря отсутствию механических элементов коммутации, обеспечивают их широкое применение в домашних условиях для защиты бытовой нагрузки, не имеющей в своем составе электромоторов, например, телевизионной и кухонной техники, а также приборов освещения.

Серьезным ограничением области применения электронных стабилизаторов является отличие формы выходного напряжения от синусоидальной, а также недостаточно высокая точность стабилизации.

Крайне не рекомендуется подключать высокоточное чувствительное оборудование к электронным стабилизаторам. Например, определенные проблемы могут возникнуть при работе с:

  • устройствами, в составе которых есть электродвигатель (насосами, системами отопления) – выходное напряжение стабилизатора, имеющее неправильную форму кривой, может привести к выходу двигателя из строя;
  • профессиональным аудио- и видеооборудованием – помехи, создаваемые при ступенчатом переключении, отрицательно скажутся на качестве картинки и звука;
  • компьютерной техникой – точности, которую дает ступенчатая регулировка напряжения, может оказаться недостаточно.

Таким образом, полностью обеспечить электропитание загородного дома или коттеджа с помощью электронного стабилизатора не получится, поскольку через него нельзя будет запитать часть чувствительного оборудования с электродвигателями, например, насосы системы водоснабжения.

Подключение нагрузки к электронному стабилизатору картинка

Критерии выбора электронного стабилизатора

При выборе электронного стабилизатора следует руководствоваться следующими техническими характеристиками устройства.

Мощность стабилизатора

Одна из важнейших характеристик устройства независимо от его типа, которая определяется в соответствии с суммарной мощностью потребления подключаемой нагрузки.

Для активной нагрузки мощность стабилизатора рекомендуется выбирать с небольшим резервом в 20-30%, для нагрузок с высокой реактивной составляющей запас по мощности рекомендуется взять большим.

Скорость стабилизации напряжения

Не менее важный параметр стабилизатора. Время коррекции практически одинаково у всех моделей этого типа. По скорости стабилизации электронные стабилизаторы безусловно являются лидерами среди устройств, использующих для преобразования напряжения автотрансформатор.

Точность регулирования

Показатели данной характеристики во многом определяются количеством дискретных ступеней регулирования - установленных полупроводниковых ключей (мощных тиристоров или симисторов). Чем их в схеме больше, тем меньше проявляется ступенчатость регулирования и на выходе устройство будет способно выдавать напряжение со значением, более приближенным к номинальному.

Рабочий диапазон входного напряжения

Нижним и верхним его порогами определяются минимальное и максимальное напряжения питающей сети, при которых устройство сможет работать, сохраняя заявленную точность стабилизации, а также защитное срабатывание - отключение стабилизатора при выходе значений входного напряжения за пределы рабочего диапазона.

Диапазон допустимых температур эксплуатации

В стабилизаторах электронного типа отсутствуют механически коммутируемые контакты, поэтому устройства неплохо переносят резкие перепады температур окружающей среды. Выбор устройства необходимо делать в соответствии этой характеристики с условиями эксплуатации.

Тип исполнения корпуса

Требуемое исполнение зависит от площади, геометрии помещения, близости расположения отопительных и нагревательных приборов и т. д. По типу корпуса стабилизаторы можно разделить на:

  • навесные - с креплением на стену;
  • стоечные - предназначенные для установки в стандартные 19-дюймовые шкафы или стойки;
  • напольные - устанавливаемые на горизонтальную поверхность.

Средства индикации и мониторинга

Довольно востребованными опциями является возможность мониторинга состояния сети и параметров работы стабилизатора, реализованного выводом данных на ЖК-дисплей или светодиодов индикации. При необходимости организации удаленного мониторинга и управления следует учитывать наличие коммуникационных интерфейсов и используемых соответствующих протоколов передачи данных.

Инверторный стабилизатор напряжения как альтернатива электронным стабилизаторам

В связи с описанными выше недостатками электронные стабилизаторы постепенно уходят в прошлое. Они стоят дороже, чем релейные приборы, но при этом все равно не обеспечивают достаточной точности и качества выходного напряжения. В качестве альтернативы для бытового использования многие все чаще используют инверторные стабилизаторы. В них применяется более современный метод преобразования, который позволяет избавиться от недостатков, свойственных устройствам на симисторах и тиристорах.

В инверторном стабилизаторе напряжение, поступающий на вход, преобразуется в постоянное, а затем снова в переменное, но уже с нужными параметрами. Благодаря этому обеспечивается форма идеальной синусоиды и достигается высокая точность стабилизации (2 %).

Инверторные стабилизаторы работают практически бесшумно и имеют полный набор защит: от перегрузок, перегрева, коротких замыканий, аварий в сети. Они являются оптимальным вариантом, если нужно обеспечить питание дорогостоящих устройств, чувствительных к перебоям в электропитании - компьютерной техники, систем отопления, котлов с электронным управлением, систем безопасности загородного дома.

Купив инверторный стабилизатор, вы сможете обеспечить надежную подачу электроэнергии на все электроприборы, которые используются в доме: от мелкой бытовой техники до систем водоснабжения и отопления. Технические особенности инверторного стабилизатора делают его сферу применения намного шире, чем у электронных моделей.

Читайте также:

Модельный ряд инверторных стабилизаторов «Штиль»

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments